References
-
Wen, P. Y. F., Chen, M. X., Zhong, Y. J., Dong, Q. Q. & Wong, H. M. Global burden and inequality of dental caries, 1990 to 2019. J. Dent. Res. 101, 392–399 (2022).
-
Hajishengallis, E., Parsaei, Y., Klein, M. I. & Koo, H. Advances in the microbial etiology and pathogenesis of early childhood caries. Mol. Oral. Microbiol. 32, 24–34 (2017).
-
Gong, Y. et al. Global transcriptional analysis of acid-inducible genes in Streptococcus mutans: multiple two-component systems involved in acid adaptation. Microbiology 155, 3322–3332 (2009).
-
Peres, M. A. et al. Oral diseases: a global public health challenge. Lancet 394, 249–260 (2019).
-
Luo, S. C. et al. How probiotics, prebiotics, synbiotics, and postbiotics prevent dental caries: an oral microbiota perspective. npj Biofilms Microbiomes 10, 1–15 (2024).
-
Baker, J. L. et al. Deep metagenomics examines the oral microbiome during dental caries, revealing novel taxa and co-occurrences with host molecules. Genome Res. 31, 64–74 (2021).
-
Legenova, K. & Bujdakova, H. The role of Streptococcus mutans in the oral biofilm. Epidemiol. Mikrobiol. Imunol. 64, 179–187 (2015).
-
Philip, N., Suneja, B. & Walsh, L. J. Ecological approaches to dental caries prevention: paradigm shift or shibboleth. Caries Res. 52, 153–165 (2018).
-
Yu, O. Y., Lam, W. Y., Wong, A. W., Duangthip, D. & Chu, C. H. Nonrestorative management of dental caries. Dent. J. 9, 121 (2021).
-
Inchingolo, A. D. et al. Oralbiotica/oralbiotics: the impact of oral microbiota on dental health and demineralization: a systematic review of the literature. Child. -Basel 9, 1014 (2022).
-
Salminen, S. et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 18, 649–667 (2021).
-
Moradi, M. et al. Postbiotics produced by lactic acid bacteria: the next frontier in food safety. Compr. Rev. Food Sci. Food Saf. 19, 3390–3415 (2020).
-
Lin, C.-W. et al. Impact of the food grade heat-killed probiotic and postbiotic oral lozenges in oral hygiene. Aging 14, 2221–2238 (2022).
-
Nataraj, B. H., Ramesh, C. & Mallappa, R. H. Characterization of biosurfactants derived from probiotic lactic acid bacteria against methicillin-resistant and sensitive Staphylococcus aureus isolates. LWT-Food Sci. Technol. 151, 112195 (2021).
-
Zhou, K. et al. Mode of action of pentocin 31-1: an antilisteria bacteriocin produced by Lactobacillus pentosus from Chinese traditional ham. Food Control 19, 817–822 (2008).
-
Jin, X. et al. Sensitive bacterial Vm sensors revealed the excitability of bacterial Vm and its role in antibiotic tolerance. Proc. Natl. Acad. Sci. USA 120, e2208348120 (2023).
-
Kaplan, C. W. et al. Selective membrane disruption: mode of action of C16G2, a specifically targeted antimicrobial peptide. Antimicrob. Agents Chemother. 55, 3446–3452 (2011).
-
Haidinger, W., Szostak, M. P., Jechlinger, W. & Lubitz, W. Online monitoring of Escherichia coli ghost production. Appl. Environ. Microbiol. 69, 468–474 (2003).
-
Jang, H. J., Kim, J. H., Lee, N.-K. & Paik, H.-D. Inhibitory effects of Lactobacillus brevis KU15153 against Streptococcus mutans KCTC 5316 causing dental caries. Microb. Pathog. 157, 104938–79 (2021).
-
Hori, K. & Matsumoto, S. Bacterial adhesion: From mechanism to control. Biochem. Eng. J. 48, 424–434 (2010).
-
Luo, Y. P., Li, Y. J. & Yan, G. A. A review on the surface hydrophobicity of bacteria and algae and its ecological significance. Trans. Oceanol. Limnol. 4, 71–79 (1997).
-
Tahmourespour, A., Salehi, R. & Kasra Kermanshahi, R. Lactobacillus acidophilus-derived biosurfactant effect on gtfB and gtfC expression level in Streptococcus mutans biofilm cells. Braz. J. Microbiol. 42, 330–339 (2011).
-
Lin, T. H., Lin, C. H. & Pan, T. M. The implication of probiotics in the prevention of dental caries. Appl. Microbiol. Biotechnol. 102, 577–586 (2018).
-
Wasfi, R., Abd El-Rahman, O. A., Zafer, M. M. & Ashour, H. M. Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans. J. Cell. Mol. Med. 22, 1972–1983 (2018).
-
Vecino, X. et al. Vineyard pruning waste as an alternative carbon source to produce novel biosurfactants by Lactobacillus paracasei. J. Ind. Eng. Chem. 55, 40–49 (2017).
-
Lim, H.-S., Yeu, J.-E., Hong, S.-P. & Kang, M.-S. Characterization of antibacterial cell-free supernatant from oral care probiotic weissella cibaria, CMU. Molecules 23, 1984 (2018).
-
van Swaaij, B. W. M., Slot, D. E., Van der Weijden, G. A., Timmerman, M. F. & Ruben, J. Fluoride, pH value, and titratable acidity of commercially available mouthwashes. Int. Dent. J. 72, 260–267 (2023).
-
Li, Y. & Zheng, J. Comparative study on the mechanical properties of human tooth enamel and synthetic hydroxyapatite. Lubr. Eng. 36, 43–46+67 (2011).
-
Liu, Y. et al. Topical delivery of low-cost protein drug candidates made in chloroplasts for biofilm disruption and uptake by oral epithelial cells. Biomaterials 105, 156–166 (2016).
-
Schneider-Rayman, M., Steinberg, D., Sionov, R. V., Friedman, M. & Shalish, M. Effect of epigallocatechin gallate on dental biofilm of Streptococcus mutans: an in vitro study. BMC Oral Health 21, 447 (2021).
-
Zhang, J. et al. Inactivation of glutamate racemase (MurI) eliminates virulence in Streptococcus mutans. Microbiol. Res. 186–187, 1–8 (2016).
-
Banas, J. A. Virulence properties of Streptococcus mutans. Front. Biosci. -Landmark 9, 1267–1277 (2004).
-
Li, Z., Xiang, Z., Zeng, J., Li, Y. & Li, J. A GntR family transcription factor in Streptococcus mutans regulates biofilm formation and expression of multiple sugar transporter genes. Front. Microbiol. 9, 3224 (2019).
-
Lin, Y., Chen, J., Zhou, X. & Li, Y. Inhibition of Streptococcus mutans biofilm formation by strategies targeting the metabolism of exopolysaccharides. Crit. Rev. Microbiol. 47, 667–677 (2021).
-
Banas, J. A., Fountain, T. L., Mazurkiewicz, J. E., Sun, K. & Vickerman, M. M. Streptococcus mutans glucan-binding protein-A affects Streptococcus gordonii biofilm architecture. FEMS Microbiol. Lett. 267, 80–88 (2007).
-
Wang, C., van der Mei, H. C., Busscher, H. J. & Ren, Y. Streptococcus mutans adhesion force sensing in multi-species oral biofilms. npj Biofilms Microbiomes 6, 1–9 (2020).
-
Hasan, S., Singh, K., Danisuddin, M., Verma, P. K. & Khan, A. U. Inhibition of major virulence pathways of Streptococcus mutans by quercitrin and deoxynojirimycin: a synergistic approach of infection control. Plos One 9, e91736 (2014).
-
Wang, Y. et al. Antimicrobial peptide GH12 suppresses cariogenic virulence factors of Streptococcus mutans. J. Oral. Microbiol. 10, 1442089 (2018).
-
Zeng, L. & Burne, R. A. Comprehensive mutational analysis of sucrose-metabolizing pathways in Streptococcus mutans reveals novel roles for the sucrose phosphotransferase system permease. J. Bacteriol. 195, 833–843 (2013).
-
Liu, Y. & Burne, R. A. Multiple two-component systems of Streptococcus mutans regulate agmatine deiminase gene expression and stress tolerance. J. Bacteriol. 191, 7363–7366 (2009).
-
Linares, D. M. et al. The putrescine biosynthesis pathway in Lactococcus lactis is transcriptionally regulated by carbon catabolic repression, mediated by CcpA. Int. J. Food Microbiol. 165, 43–50 (2013).
-
Kuhnert, W. L. & Quivey, R. G. Genetic and biochemical characterization of the F-ATPase operon from Streptococcus sanguis 10904. J. Bacteriol. 185, 1525–1533 (2003).
-
Li, Y. H. & Tian, X. L. Quorum sensing and bacterial social interactions in biofilms. Sensors 12, 2519–2538 (2012).
-
Li, Y. H. et al. A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J. Bacteriol. 184, 2699–2708 (2002).
-
Senadheera, M. D. et al. A vicRX signal transduction system in Streptococcus mutans affects gtfBCD, gbpB, and ftf expression, biofilm formation, and genetic competence development. J. Bacteriol. 187, 4064–4076 (2005).
-
Ahmed, A. et al. Effect of Lactobacillus species on Streptococcus mutans Biofilm formation. Pak. J. Pharm. Sci. 27, 1523–1528 (2014).
-
Yan, J. et al. vicR overexpression in Streptococcus mutans causes aggregation and affects interspecies competition. Mol. Oral. Microbiol. 38, 224–236 (2023).
-
Suzuki, Y., Nagasawa, R. & Senpuku, H. Inhibiting effects of fructanase on competence-stimulating peptide-dependent quorum sensing system in Streptococcus mutans. J. Infect. Chemother. 23, 634–641 (2017).
-
Wu, C. et al. Regulation of ciaXRH operon expression and identification of the CiaR regulon in Streptococcus mutans. J. Bacteriol. 192, 4669–4679 (2010).
-
He, X. et al. The cia operon of Streptococcus mutans encodes a unique component required for calcium-mediated autoregulation. Mol. Microbiol. 70, 112–126 (2008).
-
Zhu, B. et al. ciaR impacts biofilm formation by regulating an arginine biosynthesis pathway in Streptococcus sanguinis SK36. Sci. Rep. 7, 17183 (2017).
-
Heimisdottir, L. H. et al. Metabolomics insights in early childhood caries. J. Dent. Res. 100, 615–622 (2021).
-
Kreider, R. B. & Stout, J. R. Creatine in health and disease. Nutrients 13, 447 (2021).
-
Falsetta, M. L. et al. Novel antibiofilm chemotherapy targets exopolysaccharide synthesis and stress tolerance in Streptococcus mutans to modulate virulence expression in vivo. Antimicrob. Agents Chemother. 56, 6201–6211 (2012).
-
Copley, T. R., Aliferis, K. A., Kliebenstein, D. J. & Jabaji, S. H. An integrated RNAseq-1H NMR metabolomics approach to understand soybean primary metabolism regulation in response to Rhizoctonia foliar blight disease. BMC Plant Biol. 17, 84 (2017).
