References
-
Baralic, I. et al. Effect of astaxanthin supplementation on salivary IgA, oxidative stress, and inflammation in young soccer players. Evid.-based Complement. Altern. Med. 2015, 783761 (2015).
-
Hu, J., Nagarajan, D., Zhang, Q., Chang, J.-S. & Lee, D.-J. Heterotrophic cultivation of microalgae for pigment production: a review. Biotechnol. Adv. 36, 54–67 (2018).
-
Chuyen, H. V., Roach, P. D., Golding, J. B., Parks, S. E. & Nguyen, M. H. Encapsulation of carotenoid-rich oil from Gac peel: optimisation of the encapsulating process using a spray drier and the storage stability of encapsulated powder. Powder Technol. 344, 373–379 (2019).
-
Taksima, T., Limpawattana, M. & Klaypradit, W. Astaxanthin encapsulated in beads using ultrasonic atomizer and application in yogurt as evaluated by consumer sensory profile. LWT-Food Sci. Technol. 62, 431–437 (2015).
-
Higuera-Ciapara, I., Felix-Valenzuela, L. & Goycoolea, F. Astaxanthin: a review of its chemistry and applications. Crit. Rev. Food Sci. Nutr. 46, 185–196 (2006).
-
Tirado, D. F. et al. Astaxanthin encapsulation in ethyl cellulose carriers by continuous supercritical emulsions extraction: a study on particle size, encapsulation efficiency, release profile and antioxidant activity. J. Supercrit. Fluids 150, 128–136 (2019).
-
Liu, G. et al. Enhancing the stability of astaxanthin by encapsulation in poly-(l-lactic acid) microspheres using a supercritical anti-solvent process. Particuology 44, 54–62 (2019).
-
Qiang, M., Pang, X., Ma, D., Ma, C. & Liu, F. Effect of membrane surface modification using chitosan hydrochloride and lactoferrin on the properties of astaxanthin-loaded liposomes. Molecules 25, 610 (2020).
-
Kulkarni, S. A. & Feng, S.-S. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm. Res. 30, 2512–2522 (2013).
-
Sangsuriyawong, A., Limpawattana, M., Siriwan, D. & Klaypradit, W. Properties and bioavailability assessment of shrimp astaxanthin loaded liposomes. Food Sci. Biotechnol. 28, 529–537 (2019).
-
Rostamabadi, H., Falsafi, S. R. & Jafari, S. M. Nanoencapsulation of carotenoids within lipid-based nanocarriers. J. Control. Release 298, 38–67 (2019).
-
Hu, Q., Hu, S., Fleming, E., Lee, J.-Y. & Luo, Y. Chitosan-caseinate-dextran ternary complex nanoparticles for potential oral delivery of astaxanthin with significantly improved bioactivity. Int. J. Biol. Macromol. 151, 747–756 (2020).
-
Rabiee, N. et al. Multifunctional 3D hierarchical bioactive green carbon-based nanocomposites. ACS Sustain. Chem. Eng. 9, 8706–8720 (2021).
-
Rabiee, N. et al. Diatoms with invaluable applications in nanotechnology, biotechnology, and biomedicine: recent advances. ACS Biomater. Sci. Eng. 7, 3053–3068 (2021).
-
Rahimnejad, M. et al. Prevascularized micro-/nano-sized spheroid/bead aggregates for vascular tissue engineering. Nano-Micro Lett. 13, 182 (2021).
-
Zare, H. et al. Carbon nanotubes: smart drug/gene delivery carriers. Int. J. Nanomed. 1681–1706 (2021). https://doi.org/10.2147/IJN.S299448. eCollection 2021.
-
Balietti, M. et al. The effect of astaxanthin on the aging rat brain: gender-related differences in modulating inflammation. J. Sci. Food Agric. 96, 615–618 (2016).
-
Angell, A., de Nys, R., Mangott, A. & Vucko, M. J. The effects of concentration and supplementation time of natural and synthetic sources of astaxanthin on the colouration of the prawn Penaeus monodon. Algal Res. 35, 577–585 (2018).
-
Jin, Y. et al. The alcohol dehydrogenase gene family in melon (Cucumis melo L.): bioinformatic analysis and expression patterns. Front. Plant Sci. 7, 670 (2016).
-
Bjerkeng, B., Peisker, M., Von Schwartzenberg, K., Ytrestøyl, T. & Åsgård, T. Digestibility and muscle retention of astaxanthin in Atlantic salmon, Salmo salar, fed diets with the red yeast Phaffia rhodozyma in comparison with synthetic formulated astaxanthin. Aquaculture 269, 476–489 (2007).
-
Ravishankar, G. A. & Rao A. R. Global Perspectives on Astaxanthin: from Industrial Production to Food, Health, and Pharmaceutical Applications (Academic Press, 2021).
-
Rodríguez-Sifuentes, L., Marszalek, J. E., Hernández-Carbajal, G. & Chuck-Hernández, C. Importance of downstream processing of natural astaxanthin for pharmaceutical application. Front. Chem. Eng. 2, 601483 (2021).
-
Jafari, Z. et al. Nanotechnology-abetted astaxanthin formulations in multimodel therapeutic and biomedical applications. J. Med. Chem. 65, 2–36 (2021).
-
Li, X. et al. Biotechnological production of astaxanthin from the microalga Haematococcus pluvialis. Biotechnol. Adv. 43, 107602 (2020).
-
Zhao, L. et al. Isomerization of trans-astaxanthin induced by copper (II) ion in ethanol. J. Agric. Food Chem. 53, 9620–9623 (2005).
-
Honda, M., Kageyama, H., Hibino, T., Sowa, T. & Kawashima, Y. Efficient and environmentally friendly method for carotenoid extraction from Paracoccus carotinifaciens utilizing naturally occurring Z-isomerization-accelerating catalysts. Process Biochem. 89, 146–154 (2020).
-
Viazau, Y. V. et al. E/Z isomerization of astaxanthin and its monoesters in vitro under the exposure to light or heat and in overilluminated Haematococcus pluvialis cells. Bioresour. Bioprocess. 8, 55 (2021).
-
Yang, C. et al. Bioaccessibility, cellular uptake, and transport of astaxanthin isomers and their antioxidative effects in human intestinal epithelial Caco-2 cells. J. Agric. Food Chem. 65, 10223–10232 (2017).
-
Honda, M. et al. Improved carotenoid processing with sustainable solvents utilizing Z-isomerization-induced alteration in physicochemical properties: a review and future directions. Molecules 24, 2149 (2019).
-
Yang, C. et al. Anti-inflammatory effects of different astaxanthin isomers and the roles of lipid transporters in the cellular transport of astaxanthin isomers in Caco-2 cell monolayers. J. Agric. Food Chem. 67, 6222–6231 (2019).
-
Liu, X., Chen, X., Liu, H. & Cao, Y. Antioxidation and anti-aging activities of astaxanthin geometrical isomers and molecular mechanism involved in Caenorhabditis elegans. J. Funct. Foods 44, 127–136 (2018).
-
Honda, M., Maeda, H., Fukaya, T. & Goto, M. Effects of Z-isomerization on the bioavailability and functionality of carotenoids: a review. Prog. Carotenoid Res. 139–159. https://doi.org/10.5772/intechopen.78309 (2018).
-
Liu, X. & Osawa, T. Cis astaxanthin and especially 9-cis astaxanthin exhibits a higher antioxidant activity in vitro compared to the all-trans isomer. Biochem. Biophys. Res. Commun. 357, 187–193 (2007).
-
Yang, C. et al. Rapid and efficient conversion of all-E-astaxanthin to 9 Z-and 13 Z-isomers and assessment of their stability and antioxidant activities. J. Agric. Food Chem. 65, 818–826 (2017).
-
Niu, T. et al. Astaxanthin induces the Nrf2/HO-1 antioxidant pathway in human umbilical vein endothelial cells by generating trace amounts of ROS. J. Agric. Food Chem. 66, 1551–1559 (2018).
-
Young, I. & Woodside, J. Antioxidants in health and disease. J. Clin. Pathol. 54, 176–186 (2001).
-
Halliwell, B. Biochemistry of oxidative stress. Biochem. Soc. Trans. 35, 1147–1150 (2007).
-
Santos-Sánchez, N. F., Hern ndez-Carlos, B., Torres-Ariño, A. & Salas-Coronado, R. Astaxanthin and its formulations as potent oxidative stress inhibitors. Pharmacogn. Rev. 14, 8–15 (2020).
-
Rao, A. R., Sarada, R., Shylaja, M. D. & Ravishankar, G. Evaluation of hepatoprotective and antioxidant activity of astaxanthin and astaxanthin esters from microalga—Haematococcus pluvialis. J. Food Sci. Technol. 52, 6703–6710 (2015).
-
Wu, D., Xu, H., Chen, J. & Zhang, L. Effects of astaxanthin supplementation on oxidative stress. Int. J. Vitam. Nutr. Res. 90, 179–194 (2020).
-
Nowak, M. et al. Concentration dependence of anti-and pro-oxidant activity of polyphenols as evaluated with a light-emitting Fe2+–Egta–H2O2 system. Molecules 27, 3453 (2022).
-
Ranga, R., Sarada, A. R., Baskaran, V. & Ravishankar, G. A. Identification of carotenoids from green alga Haematococcus pluvialis by HPLC and LC–MS (APCI) and their antioxidant properties. J. Microbiol. Biotechnol. 19, 1333–1341 (2009).
-
Ranga Rao, A., Raghunath Reddy, R., Baskaran, V., Sarada, R. & Ravishankar, G. Characterization of microalgal carotenoids by mass spectrometry and their bioavailability and antioxidant properties elucidated in rat model. J. Agric. Food Chem. 58, 8553–8559 (2010).
-
Hix, L. M. et al. Inhibition of chemically-induced neoplastic transformation by a novel tetrasodium diphosphate astaxanthin derivative. Carcinogenesis 26, 1634–1641 (2005).
-
Parisi, V. et al. Group CS. Carotenoids and antioxidants in age-related maculopathy Italian study: multifocal electroretinogram modifications after 1 year. Ophthalmology 115, 324–33.e2 (2008).
-
Jyonouchi, H., Zhang, L., Gross, M. & Tomita, Y. Immunomodulating actions of carotenoids: enhancement of in vivo and in vitro antibody production to T-dependent antigens. Nutr. Cancer 21, 47–58 (1994).
-
Lin, K.-H. et al. Astaxanthin, a carotenoid, stimulates immune responses by enhancing IFN-γ and IL-2 secretion in primary cultured lymphocytes in vitro and ex vivo. Int. J. Mol. Sci. 17, 44 (2015).
-
Shatoor, A. S. & Al Humayed, S. Astaxanthin ameliorates high-fat diet-induced cardiac damage and fibrosis by upregulating and activating SIRT1. Saudi J. Biol. Sci. 28, 7012–7021 (2021).
-
Coombes, J. S., Sharman, J. E. & Fassett, R. G. Astaxanthin has no effect on arterial stiffness, oxidative stress, or inflammation in renal transplant recipients: a randomized controlled trial (the XANTHIN trial). Am. J. Clin. Nutr. 103, 283–289 (2016).
-
Brown, D. R., Gough, L. A., Deb, S. K., Sparks, S. A. & McNaughton, L. R. Astaxanthin in exercise metabolism, performance and recovery: a review. Front. Nutr. 4, 76 (2018).
-
Kato, T. et al. Effects of 3-month astaxanthin supplementation on cardiac function in heart failure patients with left ventricular systolic dysfunction—a pilot study. Nutrients 12, 1896 (2020).
-
Speranza, L. et al. Astaxanthin treatment reduced oxidative induced pro-inflammatory cytokines secretion in U937: SHP-1 as a novel biological target. Mar. Drugs 10, 890–899 (2012).
-
Song, X. -d et al. Astaxanthin induces mitochondria-mediated apoptosis in rat hepatocellular carcinoma CBRH-7919 cells. Biol. Pharm. Bull. 34, 839–844 (2011).
-
Kim, K.-N., Heo, S.-J., Kang, S.-M., Ahn, G. & Jeon, Y.-J. Fucoxanthin induces apoptosis in human leukemia HL-60 cells through a ROS-mediated Bcl-xL pathway. Toxicol. Vitr. 24, 1648–1654 (2010).
-
Peng, C.-H., Chang, C.-H., Peng, R. Y. & Chyau, C.-C. Improved membrane transport of astaxanthine by liposomal encapsulation. Eur. J. Pharm. Biopharm. 75, 154–161 (2010).
-
Al-Amin, M. M. et al. The antioxidant effect of astaxanthin is higher in young mice than aged: a region specific study on brain. Metab. Brain Dis. 30, 1237–1246 (2015).
-
Ying, C. -J et al. Anti-inflammatory effect of astaxanthin on the sickness behavior induced by diabetes mellitus. Cell. Mol. Neurobiol. 35, 1027–1037 (2015).
-
Suganuma, K., Nakajima, H., Ohtsuki, M. & Imokawa, G. Astaxanthin attenuates the UVA-induced up-regulation of matrix-metalloproteinase-1 and skin fibroblast elastase in human dermal fibroblasts. J. Dermatol. Sci. 58, 136–142 (2010).
-
Tominaga, K., Hongo, N., Karato, M. & Yamashita, E. Cosmetic benefits of astaxanthin on humans subjects. Acta Biochim. Pol. 59, 43–47 (2012).
-
Fakhri, S., Yosifova Aneva, I., Farzaei, M. H. & Sobarzo-Sánchez, E. The neuroprotective effects of astaxanthin: therapeutic targets and clinical perspective. Molecules 24, 2640 (2019).
-
Galasso, C. et al. On the neuroprotective role of astaxanthin: new perspectives?. Mar. Drugs 16, 247 (2018).
-
Lobos, P. et al. Astaxanthin protects primary hippocampal neurons against noxious effects of Aβ-oligomers. Neural Plast. 2016, 3456783 (2016).
-
Davinelli, S., Nielsen, M. E. & Scapagnini, G. Astaxanthin in skin health, repair, and disease: a comprehensive review. Nutrients 10, 522 (2018).
-
Li, X., Huang, R. & Luo, H. Exploring the mechanism of astaxanthin against lipopolysaccharide-induced acute lung injury by network pharmacology and experimental validation. Preprint at https://doi.org/10.21203/rs.3.rs-334157/v1 (2021).
-
Guo, S. et al. Astaxanthin protects against early acute kidney injury in severely burned rats by inactivating the TLR4/MyD88/NF-κB axis and upregulating heme oxygenase-1. Sci. Rep. 11, 6679 (2021).
-
Suzuki, Y. et al. Suppressive effects of astaxanthin against rat endotoxin-induced uveitis by inhibiting the NF-κB signaling pathway. Exp. Eye Res. 82, 275–281 (2006).
-
Giannaccare, G. et al. Clinical applications of astaxanthin in the treatment of ocular diseases: emerging insights. Mar. drugs 18, 239 (2020).
-
Zaafan, M. & Abdelhamid, A. The cardioprotective effect of astaxanthin against isoprenaline-induced myocardial injury in rats: involvement of TLR4/NF-κB signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 25, 4099–4105 (2021).
-
Zarneshan, S. N., Fakhri, S., Farzaei, M. H., Khan, H. & Saso, L. Astaxanthin targets PI3K/Akt signaling pathway toward potential therapeutic applications. Food Chem. Toxicol. 145, 111714 (2020).
-
Krzemińska, J., Wronka, M., Młynarska, E., Franczyk, B., & Rysz, J. Arterial hypertension-oxidative stress and inflammation. Antioxidants (Basel, Switzerland) 11, 172 (2022).
-
Abbott, N. J., Patabendige, A. A., Dolman, D. E., Yusof, S. R. & Begley, D. J. Structure and function of the blood–brain barrier. Neurobiol. Dis. 37, 13–25 (2010).
-
Fu, J. et al. Astaxanthin alleviates spinal cord ischemia-reperfusion injury via activation of PI3K/Akt/GSK-3 β pathway in rats. J. Orthop. Surg. Res. 15, 1–11 (2020).
-
Odeberg, J. M., Lignell, Å, Pettersson, A. & Höglund, P. Oral bioavailability of the antioxidant astaxanthin in humans is enhanced by incorporation of lipid based formulations. Eur. J. Pharm. Sci. 19, 299–304 (2003).
-
Choi, H. D., Kang, H. E., Yang, S. H., Lee, M. G. & Shin, W. G. Pharmacokinetics and first-pass metabolism of astaxanthin in rats. Br. J. Nutr. 105, 220–227 (2011).
-
Okada, Y., Ishikura, M. & Maoka, T. Bioavailability of astaxanthin in Haematococcus algal extract: the effects of timing of diet and smoking habits. Biosci. Biotechnol. Biochem. 73, 1928–1932 (2009).
-
Østerlie, M., Bjerkeng, B. & Liaaen-Jensen, S. Plasma appearance and distribution of astaxanthin E/Z and R/S isomers in plasma lipoproteins of men after single dose administration of astaxanthin. J. Nutr. Biochem. 11, 482–490 (2000).
-
Yang, Y., Kim, B. & Lee, J. Y. Astaxanthin structure, metabolism, and health benefits. J. Hum. Nutr. Food Sci. 1, 1–1003 (2013).
-
Coral-Hinostroza, G. N., Ytrestøyl, T., Ruyter, B. & Bjerkeng, B. Plasma appearance of unesterified astaxanthin geometrical E/Z and optical R/S isomers in men given single doses of a mixture of optical 3 and 3′ R/S isomers of astaxanthin fatty acyl diesters. Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. 139, 99–110 (2004).
-
Chauhan, I., Yasir, M., Verma, M. & Singh, A. P. Nanostructured lipid carriers: a groundbreaking approach for transdermal drug delivery. Adv. Pharm. Bull. 10, 150 (2020).
-
Islan, G. A., Cacicedo, M. L., Bosio, V. E. & Castro, G. R. Advances in smart nanopreparations for oral drug delivery. In Smart Pharmaceutical Nanocarriers Ch. 14 (ed., Torchilin, V.) 479–521 (World Scientific-Imperial College Press, 2016).
-
Martínez-Álvarez, Ó, Calvo, M. M. & Gómez-Estaca, J. Recent advances in astaxanthin micro/nanoencapsulation to improve its stability and functionality as a food ingredient. Mar. Drugs 18, 406 (2020).
-
Yeung, A. W. K. et al. Big impact of nanoparticles: analysis of the most cited nanopharmaceuticals and nanonutraceuticals research. Curr. Res. Biotechnol. 2, 53–63 (2020).
-
Date, A. A., Hanes, J. & Ensign, L. M. Nanoparticles for oral delivery: design, evaluation and state-of-the-art. J. Control. Release 240, 504–526 (2016).
-
Fernandez, P., André, V., Rieger, J. & Kühnle, A. Nano-emulsion formation by emulsion phase inversion. Colloids Surf. A: Physicochem. Eng. Asp. 251, 53–58 (2004).
-
Jaiswal, M., Dudhe, R. & Sharma, P. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech 5, 123–127 (2015).
-
Jeevanandam, J., San Chan, Y. & Danquah, M. K. Nano-formulations of drugs: recent developments, impact and challenges. Biochimie 128, 99–112 (2016).
-
Kumar, M., Bishnoi, R. S., Shukla, A. K. & Jain, C. P. Techniques for formulation of nanoemulsion drug delivery system: a review. Prev. Nutr. Food Sci. 24, 225 (2019).
-
Haung, H.-Y. et al. A novel oral astaxanthin nanoemulsion from Haematococcus pluvialis induces apoptosis in lung metastatic melanoma. Oxid. Med. Cell. Longev. 2020, 2647670 (2020).
-
Shen, X., Fang, T., Zheng, J. & Guo, M. Physicochemical properties and cellular uptake of astaxanthin-loaded emulsions. Molecules 24, 727 (2019).
-
Domínguez-Hernández, C., García-Alvarado, M., García-Galindo, H., Salgado-Cervantes, M. & Beristáin, C. Stability, antioxidant activity and bioavailability of nano-emulsified astaxanthin. Rev. Mex. Ing. Quím. 15, 457–468 (2016).
-
Affandi, M. M. M., Julianto, T. & Majeed, A. Enhanced oral bioavailability of astaxanthin with droplet size reduction. Food Sci. Technol. Res. 18, 549–554 (2012).
-
Boonlao, N., Ruktanonchai, U. R. & Anal, A. K. Enhancing bioaccessibility and bioavailability of carotenoids using emulsion-based delivery systems. Colloids Surf. B: Biointerfaces 209, 112211 (2022).
-
Malam, Y., Loizidou, M. & Seifalian, A. M. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci. 30, 592–599 (2009).
-
Gregoriadis, G. & Florence, A. T. Liposomes in drug delivery: clinical, diagnostic and ophthalmic potential. Drugs 45, 15–28 (1993).
-
Kazi, K. M. et al. Niosome: a future of targeted drug delivery systems. J. Adv. Pharm. Technol. Res. 1, 374–380 (2010).
-
Santonocito, D. et al. Astaxanthin-loaded stealth lipid nanoparticles (AST-SSLN) as potential carriers for the treatment of alzheimer’s disease: formulation development and optimization. Nanomaterials 11, 391 (2021).
-
Muchow, M., Maincent, P. & Müller, R. H. Lipid nanoparticles with a solid matrix (SLN®, NLC®, LDC®) for oral drug delivery. Drug Dev. Ind. Pharm. 34, 1394–1405 (2008).
-
Talegaonkar, S. & Bhattacharyya, A. Potential of lipid nanoparticles (SLNs and NLCs) in enhancing oral bioavailability of drugs with poor intestinal permeability. AAPS PharmSciTech 20, 121 (2019).
-
Wang, T., Hu, Q., Lee, J.-Y. & Luo, Y. Solid lipid–polymer hybrid nanoparticles by in situ conjugation for oral delivery of astaxanthin. J. Agric. Food Chem. 66, 9473–9480 (2018).
-
Li, M., Zahi, M. R., Yuan, Q., Tian, F. & Liang, H. Preparation and stability of astaxanthin solid lipid nanoparticles based on stearic acid. Eur. J. Lipid Sci. Technol. 118, 592–602 (2016).
-
Jain, P., Rahi, P., Pandey, V., Asati, S. & Soni, V. Nanostructure lipid carriers: a modish contrivance to overcome the ultraviolet effects. Egypt. J. Basic Appl. Sci. 4, 89–100 (2017).
-
López-García, R. & Ganem-Rondero, A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): occlusive effect and penetration enhancement ability. J. Cosmet. Dermatol. Sci. Appl. 5, 62 (2015).
-
Mao, X. et al. Stability study and in vitro evaluation of astaxanthin nanostructured lipid carriers in food industry. Integr. Ferroelectr. 200, 208–216 (2019).
-
Kim, E. S., Baek, Y., Yoo, H.-J., Lee, J.-S. & Lee, H. G. Chitosan-tripolyphosphate nanoparticles prepared by ionic gelation improve the antioxidant activities of astaxanthin in the in vitro and in vivo model. Antioxidants 11, 479 (2022).
-
Zhu, Y. et al. Improved intestinal absorption and oral bioavailability of astaxanthin using poly (ethylene glycol)-graft-chitosan nanoparticles: preparation, in vitro evaluation, and pharmacokinetics in rats. J. Sci. Food Agric. 102, 1002–1011 (2022).
-
Ku Aizuddin, K., Nurlina, M., Khuriah, A., Foo, C. & Mohd Affandi, M. Development of astaxanthin-loaded biodegradable nanoparticles by nanoprecipitation method. Int. J. Pharm. Technol. 5, 5962–5972 (2013).
-
Azman, K. A. K., Seong, F. C. & Singh, G. K. S. Affandi MMRMM. Physicochemical characterization of astaxanthin-loaded PLGA formulation via nanoprecipitation technique. J. Appl. Pharm. Sci. 11, 056–061 (2021).
-
Hu, F., Liu, W., Yan, L., Kong, F. & Wei, K. Optimization and characterization of poly (lactic-co-glycolic acid) nanoparticles loaded with astaxanthin and evaluation of anti-photodamage effect in vitro. R. Soc. Open Sci. 6, 191184 (2019).
-
Liu, C., Zhang, S., McClements, D. J., Wang, D. & Xu, Y. Design of astaxanthin-loaded core–shell nanoparticles consisting of chitosan oligosaccharides and poly (lactic-co-glycolic acid): enhancement of water solubility, stability, and bioavailability. J. Agric. Food Chem. 67, 5113–5121 (2019).
-
Landon, R. et al. Impact of astaxanthin on diabetes pathogenesis and chronic complications. Mar. Drugs 18, 357 (2020).
-
McNulty, H. P., Byun, J., Lockwood, S. F., Jacob, R. F. & Mason, R. P. Differential effects of carotenoids on lipid peroxidation due to membrane interactions: X-ray diffraction analysis. Biochim. Biophys. Acta (BBA)-Biomembr. 1768, 167–174 (2007).
-
Kim, S. H. & Kim, H. Inhibitory effect of astaxanthin on oxidative stress-induced mitochondrial dysfunction—a mini-review. Nutrients 10, 1137 (2018).
-
Yang, G. et al. Effect of berberine on the renal tubular epithelial-to-mesenchymal transition by inhibition of the Notch/snail pathway in diabetic nephropathy model KKAy mice. Drug Design Dev. Ther. 1065–1079. https://doi.org/10.2147/DDDT.S124971 (2017).
-
Dehdashtian, E. et al. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress. Life Sci. 193, 20–33 (2018).
-
Kowluru, R. A., Kowluru, A., Mishra, M. & Kumar, B. Oxidative stress and epigenetic modifications in the pathogenesis of diabetic retinopathy. Prog. Retin. Eye Res. 48, 40–61 (2015).
-
Roy, S., Kern, T. S., Song, B. & Stuebe, C. Mechanistic insights into pathological changes in the diabetic retina: implications for targeting diabetic retinopathy. Am. J. Pathol. 187, 9–19 (2017).
-
Yeh, P.-T., Huang, H.-W., Yang, C.-M., Yang, W.-S. & Yang, C.-H. Astaxanthin inhibits expression of retinal oxidative stress and inflammatory mediators in streptozotocin-induced diabetic rats. PLoS ONE 11, e0146438 (2016).
-
Das P. P., Prathapan R., Ng K. W. Advances in biomaterials based food packaging systems: current status and the way forward. Biomater. Adv. 213988. https://doi.org/10.1016/j.bioadv.2024.213988 (2024).
-
Sun, Z. et al. Protective actions of microalgae against endogenous and exogenous advanced glycation endproducts (AGEs) in human retinal pigment epithelial cells. Food Funct. 2, 251–258 (2011).
-
Benlarbi-Ben Khedher, M. et al. Astaxanthin inhibits aldose reductase activity in Psammomys obesus, a model of type 2 diabetes and diabetic retinopathy. Food Sci. Nutr. 7, 3979–3985 (2019).
-
Roohbakhsh, A., Karimi, G. & Iranshahi, M. Carotenoids in the treatment of diabetes mellitus and its complications: a mechanistic review. Biomed. Pharmacother. 91, 31–42 (2017).
-
Xu, L., Zhu, J., Yin, W. & Ding, X. Astaxanthin improves cognitive deficits from oxidative stress, nitric oxide synthase and inflammation through upregulation of PI3K/Akt in diabetes rat. Int. J. Clin. Exp. Pathol. 8, 6083 (2015).
-
Feng, Y. et al. The protective effect of astaxanthin on cognitive function via inhibition of oxidative stress and inflammation in the brains of chronic T2DM rats. Front. Pharmacol. 9, 748 (2018).
-
Stirban, A., Gawlowski, T. & Roden, M. Vascular effects of advanced glycation endproducts: clinical effects and molecular mechanisms. Mol. Metab. 3, 94–108 (2014).
-
Strain, W. D. & Paldánius, P. Diabetes, cardiovascular disease and the microcirculation. Cardiovasc. Diabetol. 17, 1–10 (2018).
-
Chan, K. C., Pen, P. J. & Yin, M. C. Anticoagulatory and antiinflammatory effects of astaxanthin in diabetic rats. J. Food Sci. 77, H76–H80 (2012).
-
Hussein, G. et al. Antihypertensive potential and mechanism of action of astaxanthin: III. Antioxidant and histopathological effects in spontaneously hypertensive rats. Biol. Pharm. Bull. 29, 684–688 (2006).
-
Iwamoto, T. et al. Inhibition of low-density lipoprotein oxidation by astaxanthin. J. Atheroscler. Thromb. 7, 216–222 (2000).
-
Naito, Y. et al. Prevention of diabetic nephropathy by treatment with astaxanthin in diabetic db/db mice. Biofactors 20, 49–59 (2004).
-
Manabe, E. et al. Astaxanthin protects mesangial cells from hyperglycemia-induced oxidative signaling. J. Cell. Biochem. 103, 1925–1937 (2008).
-
Sila, A. et al. Astaxanthin from shrimp by-products ameliorates nephropathy in diabetic rats. Eur. J. Nutr. 54, 301–307 (2015).
-
Zhu, X., Chen, Y., Chen, Q., Yang, H. & Xie, X. Astaxanthin promotes Nrf2/ARE signaling to alleviate renal fibronectin and collagen IV accumulation in diabetic rats. J. Diabetes Res. 2018, 6730315 (2018).
-
Zhang, H. et al. Podocyte-specific overexpression of GLUT1 surprisingly reduces mesangial matrix expansion in diabetic nephropathy in mice. Am. J. Physiol.-Ren. Physiol. 299, F91–F98 (2010).
-
Chen, Z. et al. Kidney-targeted astaxanthin natural antioxidant nanosystem for diabetic nephropathy therapy. Eur. J. Pharm. Biopharm. 156, 143–154 (2020).
-
Farjadian, F. et al. Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: set the bugs to work?. Biotechnol. Adv. 36, 968–985 (2018).
-
Rabiee, N. et al. Polymeric nanoparticles for nasal drug delivery to the brain: relevance to Alzheimer’s disease. Adv. Ther. 4, 2000076 (2021).
-
Rabiee, N., Bagherzadeh, M. & Rabiee, M. A perspective to the correlation between brain insulin resistance and Alzheimer: medicinal chemistry approach. Curr. Diabetes Rev. 15, 255–258 (2019).
-
Sugandhi, V. V. et al. Intranasal delivery of rapamycin via brain-targeting polymeric micelles for Alzheimer’s disease treatment. Int. J. Pharm. 126011. https://doi.org/10.1016/j.ijpharm.2025.126011 (2025).
-
Slika, H. et al. 1335 intracranial nanogel pellets carrying temozolomide and paclitaxel for adjuvant glioblastoma therapy. Neurosurgery 71, 223 (2025).
-
Slika, H. et al. Intracranial nanogel pellets carrying temozolomide and paclitaxel for adjuvant brain cancer therapy. Mol. Pharm. 22, 131–141 (2024).
-
Stawicki, B., Schacher, T. & Cho, H. Nanogels as a versatile drug delivery system for brain cancer. Gels 7, 63 (2021).
-
Siegal, T. et al. In vivo assessment of the window of barrier opening after osmotic blood—brain barrier disruption in humans. J. Neurosurg. 92, 599–605 (2000).
-
Rabiee, N. et al. Carbosilane dendrimers: drug and gene delivery applications. J. Drug Deliv. Sci. Technol. 59, 101879 (2020).
-
Rabiee, N. et al. Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy. Biomaterials 232, 119707 (2020).
-
Hynynen, K. et al. Focal disruption of the blood–brain barrier due to 260-kHz ultrasound bursts: a method for molecular imaging and targeted drug delivery. J. Neurosurg. 105, 445–454 (2006).
-
Maghsoudi S., et al. Burgeoning polymer nano blends for improved controlled drug release: a review. Int. J. Nanomed. 4363–4392. https://doi.org/10.2147/IJN.S252237 (2020).
-
Rabiee, N. et al. Nanotechnology-assisted microfluidic systems: from bench to bedside. Nanomedicine 16, 237–258 (2021).
-
Fanaee-Danesh, E. et al. Astaxanthin exerts protective effects similar to bexarotene in Alzheimer’s disease by modulating amyloid-beta and cholesterol homeostasis in blood-brain barrier endothelial cells. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 2224–2245 (2019).
-
Bellavance, M.-A., Blanchette, M. & Fortin, D. Recent advances in blood–brain barrier disruption as a CNS delivery strategy. AAPS J. 10, 166–177 (2008).
-
Dube, T., Chibh, S., Mishra, J. & Panda, J. J. Receptor targeted polymeric nanostructures capable of navigating across the blood–brain barrier for effective delivery of neural therapeutics. ACS Chem. Neurosci. 8, 2105–2117 (2017).
-
Shabana, P., Bonthagarala, B., Harini, A. L. & Dasari, V. Nasal drug delivery: a potential route for brain targeting. Int. J. Adv. Sci. Res. 1, 65–70 (2015).
-
Nasseri, B., Kocum, I. C., Seymen, C. M. & Rabiee, N. Penetration depth in nanoparticles incorporated radiofrequency hyperthermia into the tissue: comprehensive study with histology and pathology observations. IET Nanobiotechnol. 13, 634–639 (2019).
-
Pardridge, W. M. Molecular Trojan horses for blood–brain barrier drug delivery. Curr. Opin. Pharmacol. 6, 494–500 (2006).
-
Pardridge, W. M. Delivery of biologics across the blood–brain barrier with molecular Trojan horse technology. BioDrugs 31, 503–519 (2017).
-
Thassu, D., Pathak, Y. & Deleers, M. Nanoparticulate drug-delivery systems: an overview. Nanopart. Drug Deliv. Syst. 1–31 (2007).
-
Rabiee, N. et al. Aptamer hybrid nanocomplexes as targeting components for antibiotic/gene delivery systems and diagnostics: a review. Int. J. Nanomed. 4237–4256. https://doi.org/10.2147/IJN.S248736 (2020).
-
Rabiee, N. et al. Turning toxic nanomaterials into a safe and bioactive nanocarrier for co-delivery of DOX/pCRISPR. ACS Appl. Bio Mater. 4, 5336–5351 (2021).
-
Silva, G. A. Nanotechnology approaches to crossing the blood–brain barrier and drug delivery to the CNS. BMC Neurosci. 9, S4 (2008).
-
Tang, W. et al. Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem. Soc. Rev. 48, 2967–3014 (2019).
-
Tillotson, G. S. Trojan horse antibiotics—a novel way to circumvent Gram-negative bacterial resistance?. Infect. Dis.: Res. Treat. 9, IDRT. S31567 (2016).
-
Fang, F. et al. Non-invasive approaches for drug delivery to the brain based on the receptor mediated transport. Mater. Sci. Eng.: C 76, 1316–1327 (2017).
-
Jain, K. Nanobiotechnology-based drug delivery to the central nervous system. Neurodegener. Dis. 4, 287–291 (2007).
-
Naqvi, S., Panghal, A. & Flora, S. Nanotechnology: a promising approach for delivery of neuroprotective drugs. Front. Neurosci. 14, 494 (2020).
-
Masserini, M. Nanoparticles for brain drug delivery. Int. Sch. Res. Not. 2013, 238428 (2013).
-
Pietroiusti, A., Campagnolo, L. & Fadeel, B. Interactions of engineered nanoparticles with organs protected by internal biological barriers. Small 9, 1557–1572 (2013).
-
Fakhri, S., Abbaszadeh, F., Dargahi, L. & Jorjani, M. Astaxanthin: a mechanistic review on its biological activities and health benefits. Pharmacol. Res. 136, 1–20 (2018).
-
Barros, M. P., Poppe, S. C. & Bondan, E. F. Neuroprotective properties of the marine carotenoid astaxanthin and omega-3 fatty acids, and perspectives for the natural combination of both in krill oil. Nutrients 6, 1293–1317 (2014).
-
Graber, J. J. & Dhib-Jalbut, S. Protective autoimmunity in the nervous system. Pharmacol. Ther. 121, 147–159 (2009).
-
Lin, T.-C. et al. Nanotechnology-based drug delivery treatments and specific targeting therapy for age-related macular degeneration. J. Chin. Med. Assoc. 78, 635–641 (2015).
-
Shen, H. et al. Astaxanthin reduces ischemic brain injury in adult rats. FASEB J. 23, 1958 (2009).
-
Pan, L., Zhou, Y., Li, X. -f, Wan, Q. -j & Yu, L. -h Preventive treatment of astaxanthin provides neuroprotection through suppression of reactive oxygen species and activation of antioxidant defense pathway after stroke in rats. Brain Res. Bull. 130, 211–220 (2017).
-
Rahman, S. O. et al. Neuroprotective role of astaxanthin in hippocampal insulin resistance induced by Aβ peptides in animal model of Alzheimer’s disease. Biomed. Pharmacother. 110, 47–58 (2019).
-
Che, H. et al. Effects of astaxanthin and docosahexaenoic-acid-acylated astaxanthin on Alzheimer’s disease in APP/PS1 double-transgenic mice. J. Agric. Food Chem. 66, 4948–4957 (2018).
-
Gorska-Ciebiada, M., Saryusz-Wolska, M., Borkowska, A., Ciebiada, M. & Loba, J. Serum levels of inflammatory markers in depressed elderly patients with diabetes and mild cognitive impairment. PloS ONE 10, e0120433 (2015).
-
Modrego, P. J., Fayed, N. & Pina, M. A. Conversion from mild cognitive impairment to probable Alzheimer’s disease predicted by brain magnetic resonance spectroscopy. Am. J. Psychiatry 162, 667–675 (2005).
-
Kessing, L. V. et al. Antidiabetes agents and incident depression: a nationwide population-based study. Diabetes Care 43, 3050–3060 (2020).
-
Fonseka, T. M., McIntyre, R. S., Soczynska, J. K. & Kennedy, S. H. Novel investigational drugs targeting IL-6 signaling for the treatment of depression. Expert Opin. Investig. Drugs 24, 459–475 (2015).
-
Mazza, M., Pomponi, M., Janiri, L., Bria, P. & Mazza, S. Omega-3 fatty acids and antioxidants in neurological and psychiatric diseases: an overview. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 31, 12–26 (2007).
-
Zhou, Y. et al. High-dose astaxanthin supplementation suppresses antioxidant enzyme activity during moderate-intensity swimming training in mice. Nutrients 11, 1244 (2019).
-
Wibrand, K. et al. Enhanced cognitive function and antidepressant-like effects after krill oil supplementation in rats. Lipids Health Dis. 12, 1–13 (2013).
-
Ghasemi, N. The evaluation of astaxanthin effects on differentiation of human adipose derived stem cells into oligodendrocyte precursor cells. Avicenna J. Med. Biotechnol. 10, 69 (2018).
-
Utikal, J. et al. Numerical abnormalities of the Cyclin D1 gene locus on chromosome 11q13 in non-melanoma skin cancer. Cancer Lett. 219, 197–204 (2005).
-
Susin, S. A. et al. Two distinct pathways leading to nuclear apoptosis. J. Exp. Med. 192, 571–580 (2000).
-
Thompson, C. B. Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456–1462 (1995).
-
Zhou, G. P. & Doctor, K. Subcellular location prediction of apoptosis proteins. Proteins: Struct. Funct. Bioinform. 50, 44–48 (2003).
-
Fesik, S. W. & Shi, Y. Controlling the caspases. Science 294, 1477–1478 (2001).
-
Murphy, K., Ranganathan, V., Farnsworth, M., Kavallaris, M. & Lock, R. B. Bcl-2 inhibits Bax translocation from cytosol to mitochondria during drug-induced apoptosis of human tumor cells. Cell Death Differ. 7, 102–111 (2000).
-
Tang, G., Yang, J., Minemoto, Y. & Lin, A. Blocking caspase-3-mediated proteolysis of IKKβ suppresses TNF-α-induced apoptosis. Mol. Cell 8, 1005–1016 (2001).
-
Tang, X., Liu, B., Wang, X., Yu, Q. & Fang, R. Epidermal growth factor, through alleviating oxidative stress, protect IPEC-J2 cells from lipopolysaccharides-induced apoptosis. Int. J. Mol. Sci. 19, 848 (2018).
-
Anderson, M. L. A preliminary investigation of the enzymatic inhibition of 5α-reductase and growth of prostatic carcinoma cell line LNCap-FGC by natural astaxanthin and saw palmetto lipid extract in vitro. J. Herb. Pharmacother. 5, 17–26 (2005).
-
Chen, Y.-T. et al. Astaxanthin reduces MMP expressions, suppresses cancer cell migrations, and triggers apoptotic caspases of in vitro and in vivo models in melanoma. J. Funct. Foods 31, 20–31 (2017).
-
Liao, K.-S. et al. Astaxanthin enhances pemetrexed-induced cytotoxicity by downregulation of thymidylate synthase expression in human lung cancer cells. Regul. Toxicol. Pharmacol. 81, 353–361 (2016).
-
Nagaraj, S. et al. Antiproliferative potential of astaxanthin-rich alga Haematococcus pluvialis Flotow on human hepatic cancer (HepG2) cell line. Biomed. Prev. Nutr. 2, 149–153 (2012).
-
Bharathiraja, S. et al. Astaxanthin conjugated polypyrrole nanoparticles as a multimodal agent for photo-based therapy and imaging. Int. J. Pharm. 517, 216–225 (2017).
-
Wang, L. V. Multiscale photoacoustic microscopy and computed tomography. Nat. Photonics 3, 503–509 (2009).
-
Cho, E. C., Glaus, C., Chen, J., Welch, M. J. & Xia, Y. Inorganic nanoparticle-based contrast agents for molecular imaging. Trends Mol. Med. 16, 561–573 (2010).
-
Smith, A. M., Mancini, M. C. & Nie, S. Second window for in vivo imaging. Nat. Nanotechnol. 4, 710–711 (2009).
-
Nguyen, V. P., Park, S., Oh, J. & Wook Kang, H. Biocompatible astaxanthin as novel contrast agent for biomedical imaging. J. Biophotonics 10, 1053–1061 (2017).
-
Makvandi, P. et al. Stimuli-responsive transdermal microneedle patches. Mater. Today 47, 206–222 (2021).
-
Bolzinger, M.-A., Briançon, S., Pelletier, J. & Chevalier, Y. Penetration of drugs through skin, a complex rate-controlling membrane. Curr. Opin. Colloid Interface Sci. 17, 156–165 (2012).
-
Iqbal, B., Ali, J. & Baboota, S. Recent advances and development in epidermal and dermal drug deposition enhancement technology. Int. J. Dermatol. 57, 646–660 (2018).
-
Chamundeeswari, M., Jeslin, J. & Verma, M. L. Nanocarriers for drug delivery applications. Environ. Chem. Lett. 17, 849–865 (2019).
-
Dayan, N. Pathways for skin penetration. Cosmet. Toilet. 120, 67–76 (2005).
-
Zhang, H., Zhai, Y., Yang, X. & Zhai, G. Breaking the skin barrier: achievements and future directions. Curr. Pharm. Des. 21, 2713–2724 (2015).
-
Al Shaal, L., Shegokar, R. & Müller, R. H. Production and characterization of antioxidant apigenin nanocrystals as a novel UV skin protective formulation. Int. J. Pharm. 420, 133–140 (2011).
-
Batheja, P., Sheihet, L., Kohn, J., Singer, A. J. & Michniak-Kohn, B. Topical drug delivery by a polymeric nanosphere gel: formulation optimization and in vitro and in vivo skin distribution studies. J. Control. Release 149, 159–167 (2011).
-
Prow, T. W. et al. Nanoparticles and microparticles for skin drug delivery. Adv. Drug Deliv. Rev. 63, 470–491 (2011).
-
Ashtiani, H. A., Bishe, P., Lashgari, N.-A., Nilforoushzadeh, M. A. & Zare, S. Liposomes in cosmetics. J. Skin Stem Cell 3, e65815 (2016).
-
Tabata, N., O’Goshi, K., Zhen, Y., Kligman, A. & Tagami, H. Biophysical assessment of persistent effects of moisturizers after their daily applications: evaluation of corneotherapy. Dermatology 200, 308–313 (2000).
-
Makvandi, P. et al. Engineering microneedle patches for improved penetration: analysis, skin models and factors affecting needle insertion. Nano-Micro Lett. 13, 1–41 (2021).
-
Bagheri, M., Validi, M., Gholipour, A., Makvandi, P. & Sharifi, E. Chitosan nanofiber biocomposites for potential wound healing applications: antioxidant activity with synergic antibacterial effect. Bioeng. Transl. Med. 7, e10254 (2022).
-
Visioli, F. & Artaria, C. Astaxanthin in cardiovascular health and disease: mechanisms of action, therapeutic merits, and knowledge gaps. Food Funct. 8, 39–63 (2017).
-
Svobodova, A., Walterova, D. & Vostalova, J. Ultraviolet light induced alteration to the skin. Biomed. Pap.-Palacky. Univ. Olomouc 150, 25 (2006).
-
Rafi, M. M., Yadav, P. N. & Reyes, M. Lycopene inhibits LPS-induced proinflammatory mediator inducible nitric oxide synthase in mouse macrophage cells. J. Food Sci. 72, S069–S074 (2007).
-
Chew, B. P. et al. Dietary astaxanthin enhances immune response in dogs. Vet. Immunol. Immunopathol. 140, 199–206 (2011).
-
Santocono, M., Zurria, M., Berrettini, M., Fedeli, D. & Falcioni, G. Influence of astaxanthin, zeaxanthin and lutein on DNA damage and repair in UVA-irradiated cells. J. Photochem. Photobiol. B: Biol. 85, 205–215 (2006).
-
Chalyk, N. E., Klochkov, V. A., Bandaletova, T. Y., Kyle, N. H. & Petyaev, I. M. Continuous astaxanthin intake reduces oxidative stress and reverses age-related morphological changes of residual skin surface components in middle-aged volunteers. Nutr. Res. 48, 40–48 (2017).
-
Ito, N., Seki, S. & Ueda, F. The protective role of astaxanthin for UV-induced skin deterioration in healthy people—a randomized, double-blind, placebo-controlled trial. Nutrients 10, 817 (2018).
-
McCall, B., McPartland, C. K., Moore, R., Frank-Kamenetskii, A. & Booth, B. W. Effects of astaxanthin on the proliferation and migration of breast cancer cells in vitro. Antioxidants 7, 135 (2018).
-
Yamashita, E. The effects of a dietary supplement containing astaxanthin on skin condition. Food Style 10, 91–95 (2006).
-
Singh, K. N., Patil, S. & Barkate, H. Protective effects of astaxanthin on skin: recent scientific evidence, possible mechanisms, and potential indications. J. Cosmet. Dermatol. 19, 22–27 (2020).
-
Tavassolifar, M. J., Vodjgani, M., Salehi, Z. & Izad, M. The influence of reactive oxygen species in the immune system and pathogenesis of multiple sclerosis. Autoimmune Dis. 2020, 5793817 (2020).
-
Bennedsen, M., Wang, X., Willén, R., Wadström, T. & Andersen, L. P. Treatment of H. pylori infected mice with antioxidant astaxanthin reduces gastric inflammation, bacterial load and modulates cytokine release by splenocytes. Immunol. Lett. 70, 185–189 (2000).
-
Park, J. S., Chyun, J. H., Kim, Y. K., Line, L. L. & Chew, B. P. Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans. Nutr. Metab. 7, 1–10 (2010).
-
Veeruraj, A., Liu, L., Zheng, J., Wu, J. & Arumugam, M. Evaluation of astaxanthin incorporated collagen film developed from the outer skin waste of squid Doryteuthis singhalensis for wound healing and tissue regenerative applications. Mater. Sci. Eng.: C 95, 29–42 (2019).
-
Lyons, N. M. & O’Brien, N. M. Modulatory effects of an algal extract containing astaxanthin on UVA-irradiated cells in culture. J. Dermatol. Sci. 30, 73–84 (2002).
-
Poljšak, B., Dahmane, R. G. & Godić, A. Intrinsic skin aging: the role of oxidative stress. Acta Dermatovenerol. Alp. Pannonica Adriat. 21, 33–36 (2012).
-
Kishimoto, Y. et al. Astaxanthin suppresses scavenger receptor expression and matrix metalloproteinase activity in macrophages. Eur. J. Nutr. 49, 119–126 (2010).
-
Priyadarshini, L. & Aggarwal, A. Astaxanthin inhibits cytokines production and inflammatory gene expression by suppressing IκB kinase-dependent nuclear factor κB activation in pre and postpartum Murrah buffaloes during different seasons. Vet. World 11, 782 (2018).
-
Yoshihisa, Y., Rehman, M. U. & Shimizu, T. Astaxanthin, a xanthophyll carotenoid, inhibits ultraviolet-induced apoptosis in keratinocytes. Exp. Dermatol. 23, 178–183 (2014).
-
Kikuchi, K. et al. Cytoprotective effect of astaxanthin in a model of normal intraocular pressure glaucoma. J. Ophthalmol. 2020, 9539681 (2020).
-
Otsuka, T. et al. Astaxanthin protects against retinal damage: evidence from in vivo and in vitro retinal ischemia and reperfusion models. Curr. Eye Res. 41, 1465–1472 (2016).
-
Rivera, J. C. et al. Ischemic retinopathies: oxidative stress and inflammation. Oxid. Med. Cell. Longev. 2017, 3940241 (2017).
-
Semeraro, F. et al. Diabetic retinopathy: vascular and inflammatory disease. J. Diabetes Res. 2015, 582060 (2015).
-
Tha, K. K. et al. Changes in expressions of proinflammatory cytokines IL-1β, TNF-α and IL-6 in the brain of senescence accelerated mouse (SAM) P8. Brain Res. 885, 25–31 (2000).
-
Choi, S.-K., Park, Y.-S., Choi, D.-K. & Chang, H.-I. Effects of astaxanthin on the production of NO and the expression of COX-2 and iNOS in LPS-stimulated BV2 microglial cells. J. Microbiol. Biotechnol. 18, 1990–1996 (2008).
-
Lennikov, A. et al. Amelioration of ultraviolet-induced photokeratitis in mice treated with astaxanthin eye drops. Mol. Vis. 18, 455–464 (2012).
-
Yamagishi, R. & Aihara, M. Neuroprotective effect of astaxanthin against rat retinal ganglion cell death under various stresses that induce apoptosis and necrosis. Mol. Vis. 20, 1796–1805 (2014).
-
Cort, A. et al. Suppressive effect of astaxanthin on retinal injury induced by elevated intraocular pressure. Regul. Toxicol. Pharmacol. 58, 121–130 (2010).
-
Schwartz, S. D. et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385, 509–516 (2015).
-
Nayak, K. & Misra, M. A review on recent drug delivery systems for posterior segment of eye. Biomed. Pharmacother. 107, 1564–1582 (2018).
-
Jafari, Z. et al. Nanotechnology-abetted astaxanthin formulations in multimodel therapeutic and biomedical applications. J. Med. Chem. 65, 2–36 (2022).
-
Agrahari, V. et al. A comprehensive insight on ocular pharmacokinetics. Drug Deliv. Transl. Res. 6, 735–754 (2016).
-
Fakhri, S., Abbaszadeh, F., Dargahi, L. & Jorjani, M. Astaxanthin: a mechanistic review on its biological activities and health benefits. Pharm. Res. 136, 1–20 (2018).
-
Fratter, A., Biagi, D. & Cicero, A. F. G. Sublingual delivery of astaxanthin through a novel ascorbyl palmitate-based nanoemulsion: preliminary data. Mar. Drugs 17, (2019).
-
Shimokawa, T. et al. Efficacy of high-affinity liposomal astaxanthin on up-regulation of age-related markers induced by oxidative stress in human corneal epithelial cells. J. Clin. Biochem. Nutr. 64, 27–35 (2019).
-
Schopf, L. R. et al. Topical ocular drug delivery to the back of the eye by mucus-penetrating particles. Transl. Vis. Sci. Technol. 4, 11 (2015).
-
Weng, Y. et al. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm. Sin. B 7, 281–291 (2017).
-
Patel, A., Cholkar, K., Agrahari, V. & Mitra, A. K. Ocular drug delivery systems: an overview. World J. Pharmacol. 2, 47–64 (2013).
-
Abdol Wahab, N. R., Meor Mohd Affandi, M. M. R., Fakurazi, S., Alias, E. & Hassan, H. Nanocarrier system: state-of-the-art in oral delivery of astaxanthin. Antioxidants (Basel) 11, (2022).
-
Gaspar, R. et al. Regulatory issues surrounding nanomedicines: setting the scene for the next generation of nanopharmaceuticals. Nanomedicine (London) 2, 143–147 (2007).
-
Tan, B. L., Norhaizan, M. E., Liew, W. P. & Sulaiman Rahman, H. Antioxidant and oxidative stress: a mutual interplay in age-related diseases. Front. Pharmacol. 9, 1162 (2018).
-
Bjelakovic, G., Nikolova, D. & Gluud, C. Antioxidant supplements and mortality. Curr. Opin. Clin. Nutr. Metab. Care 17, 40–44 (2014).
-
Ndhlala, A. R., Moyo, M. & Van Staden, J. Natural antioxidants: fascinating or mythical biomolecules?. Molecules 15, 6905–6930 (2010).
-
Ganesan, P., Arulselvan, P. & Choi, D. K. Phytobioactive compound-based nanodelivery systems for the treatment of type 2 diabetes mellitus—current status. Int. J. Nanomed. 12, 1097–1111 (2017).
-
Liu, R. H. Dietary bioactive compounds and their health implications. J. Food Sci. 78, A18–A25 (2013).
-
Magne, T. M. et al. Graphene and its derivatives: understanding the main chemical and medicinal chemistry roles for biomedical applications. J. Nanostruct. Chem. 12, 693–727 (2022).
