References
-
Vasam, M., Korutla, S. & Bohara, R. A. Acne vulgaris: A review of the pathophysiology, treatment, and recent nanotechnology based advances. Biochem. Biophys. Rep. 36 https://doi.org/10.1016/j.bbrep.2023.101578 (2023).
-
Sutaria, A. H., Masood, S., Saleh, H. M. & Schlessinger J. Acne Vulgaris. StatPearls (2023).
-
Li, Y., Hu, X., Dong, G., Wang, X. & Liu, T. Acne treatment: research progress and new perspectives. Front. Med. 11 https://doi.org/10.3389/fmed.2024.1425675 (2024).
-
Bilal, M., Mehmood, S. & Iqbal, H. M. N. The Beast of beauty: environmental and health concerns of toxic components in cosmetics. Cosmetics 7 https://doi.org/10.3390/cosmetics7010013 (2020).
-
Reynolds, R. V. et al. Guidelines of care for the management of acne vulgaris. J. Am. Acad. Dermatol. 90, 1006. https://doi.org/10.1016/j.jaad.2023.12.017 (2024). e1001-1006 e1030.
-
Kutlu, Ö., Karadağ, A. S. & Wollina, U. Adult acne versus adolescent acne: a narrative review with a focus on epidemiology to treatment. An. Bras. Dermatol. 98, 75–83. https://doi.org/10.1016/j.abd.2022.01.006 (2023).
-
Torgbo, S., Rugthaworn, P., Sukatta, U. & Sukyai, P. Biological characterization and quantification of Rambutan (Nephelium lappaceum L.) Peel extract as a potential source of valuable minerals and ellagitannins for industrial applications. ACS Omega. 7, 34647–34656. https://doi.org/10.1021/acsomega.2c04646 (2022).
-
Radoor, S., Karayil, J., Jayakumar, A., Siengchin, S. & Parameswaranpillai, J. A low cost and eco-friendly membrane from Polyvinyl alcohol, Chitosan and honey: synthesis, characterization and antibacterial property. J. Polym. Res. 28, 82. https://doi.org/10.1007/s10965-021-02415-2 (2021).
-
Somwongin, S. et al. Bee product-based antimicrobial film-forming gels targeting Staphylococcus aureus, Staphylococcus epidermidis, and Cutibacterium acnes for anti-acne applications. Gels 11 https://doi.org/10.3390/gels11100802 (2025).
-
Dhiwar, P., Satapathy, T., Sahu, A. K. & Patel, N. Exploring the potential of herbal bioactives to treat acne: A perspective review. Pharmacol. Res. – Nat. Prod. 7, 100260. https://doi.org/10.1016/j.prenap.2025.100260 (2025).
-
Abate, M. et al. Mangostanin, a Xanthone derived from garcinia Mangostana fruit, exerts protective and reparative effects on oxidative damage in human keratinocytes. Pharmaceuticals (Basel). 15 https://doi.org/10.3390/ph15010084 (2022).
-
Saikia, R. et al. Exploring the therapeutic potential of Xanthones in diabetes management: current insights and future directions. Eur. J. Med. Chem. Rep. 12 https://doi.org/10.1016/j.ejmcr.2024.100189 (2024).
-
Aparamarta, H. W. et al. Optimization of α-mangostin and catechins compound extraction from mangosteen skin extract (Garcinia Mangostana L.) as potential antioxidant using combination method of microwaved assisted extraction – batchwise solvent extraction. S. Afr. J. Chem. Eng. 54, 191–199. https://doi.org/10.1016/j.sajce.2025.07.013 (2025).
-
Remali, J., Sahidin, I. & Aizat, W. M. Xanthone biosynthetic pathway in plants: a review. Front. Plant. Sci. 13, 809497. https://doi.org/10.3389/fpls.2022.809497 (2022).
-
Higuchi, H. et al. Suppressive effect of mangosteen rind extract on the spontaneous development of atopic dermatitis in NC/Tnd mice. J. Dermatol. 40, 786–796. https://doi.org/10.1111/1346-8138.12250 (2013).
-
Li, H. et al. Development of Xanthone derivatives as effective broad-spectrum antimicrobials: disrupting cell wall and inhibiting DNA synthesis. Sci. Advan. 11, eadt4723 (2025).
-
Sriyanti, I. et al. Mangosteen pericarp extract embedded in electrospun PVP nanofiber mats: physicochemical properties and release mechanism of alpha-mangostin. Int. J. Nanomed. 13, 4927–4941. https://doi.org/10.2147/IJN.S167670 (2018).
-
Liu, Y. et al. Construction of a mesoporous Polydopamine@GO/Cellulose nanofibril composite hydrogel with an encapsulation structure for controllable drug release and toxicity shielding. ACS Appl. Mater. Interfaces. 12, 57410–57420. https://doi.org/10.1021/acsami.0c15465 (2020).
-
Liu, Y. et al. In vivo evaluation of enhanced drug carrier efficiency and cardiac anti-hypertrophy therapeutic potential of nano-curcumin encapsulated photo-plasmonic nanoparticles combined polymerized nano-vesicles: A novel strategy. J. Photochem. Photobiol B. 199, 111619. https://doi.org/10.1016/j.jphotobiol.2019.111619 (2019).
-
Taokaew, S. et al. Multifunctional cellulosic nanofiber film with enhanced antimicrobial and anticancer properties by incorporation of ethanolic extract of garcinia Mangostana Peel. Mater. Sci. Eng. C Mater. Biol. Appl. 120, 111783. https://doi.org/10.1016/j.msec.2020.111783 (2021).
-
Martins, D., Rocha, C., Dourado, F. & Gama, M. Bacterial cellulose-carboxymethyl cellulose (BC:CMC) dry formulation as stabilizer and texturizing agent for surfactant-free cosmetic formulations. Colloids Surf., A. 617 https://doi.org/10.1016/j.colsurfa.2021.126380 (2021).
-
Zhang, X., Wang, D., Liu, S. & Tang, J. Bacterial cellulose nanofibril-based Pickering emulsions: recent trends and applications in the food industry. Foods 11 https://doi.org/10.3390/foods11244064 (2022).
-
Sederavičiūtė, F., Bekampienė, P. & Domskienė, J. Effect of pretreatment procedure on properties of Kombucha fermented bacterial cellulose membrane. Polym. Test. 78 https://doi.org/10.1016/j.polymertesting.2019.105941 (2019).
-
Usawattanakul, N. et al. Green extraction and isolation of cellulose nanofibrils from Orchid (Dendrobium Sonia earsakul) stem for wound dressing application. OpenNano 22 https://doi.org/10.1016/j.onano.2024.100229 (2025).
-
Torgbo, S. et al. Cellulose fibers and ellagitannin-rich extractives from Rambutan (Nephelium lappaceum L.) Peel by an eco-friendly approach. Int. J. Biol. Macromol. 259, 128857. https://doi.org/10.1016/j.ijbiomac.2023.128857 (2024).
-
Torgbo, S., Sukyai, P. & Sukatta, U. Rojviriya, a. N. K. Valorization of Rambutan (Naphelium lappaceum L.) peel: an enzymatic approach toward a biopolymer absorbent foam. Cellulose 31, 9907–9923. https://doi.org/10.1007/s10570-024-06184-1 (2024).
-
Chandra, S., Chatterjee, P., Dey, P. & Bhattacharya, S. Evaluation of in vitro anti-inflammatory activity of coffee against the denaturation of protein. Asian Pac. J. Trop. Biomed. 2, S178–S180. https://doi.org/10.1016/S2221-1691(12)60154-3 (2012).
-
Torres-Rodriguez, M. L., Garcia-Chavez, E., Berhow, M. & de Mejia, E. G. Anti-inflammatory and anti-oxidant effect of Calea urticifolia lyophilized aqueous extract on lipopolysaccharide-stimulated RAW 264.7 macrophages. J. Ethnopharmacol. 188, 266–274. https://doi.org/10.1016/j.jep.2016.04.057 (2016).
-
Basri, D. & Fan, S. The potential of aqueous and acetone extracts of galls of Quercus infectoria as antibacterial agents. Indian J. Pharmacol. 37 https://doi.org/10.4103/0253-7613.13851 (2005).
-
Sofy, A. R. & dougdoug, K. E. Preventative and curative effect of Moringa Oleifera aqueous extract to ensure safe natural antimicrobials targeting foodborne pathogens. iMedpub Journals. 8 https://doi.org/10.21767/1989-8436.100051 (2017).
-
Sykula, A., Janiak-Wlodarczyk, I. & Kapusta, I. T. Formulation and evaluation of the antioxidant activity of an emulsion containing a commercial green tea extract. Molecules 30 https://doi.org/10.3390/molecules30010197 (2025).
-
Kulawik-Pioro, A., Kurpiewska, J. & Kulaszka, A. Rheological and sensory properties of hydrophilic skin protection gels based on polyacrylates. Int. J. Occup. Saf. Ergon. 24, 129–134. https://doi.org/10.1080/10803548.2017.1309167 (2018).
-
Pinto, N. O. F. et al. Bacterial cellulose nanocrystals or nanofibrils as Pickering stabilizers in low-oil emulsions: a comparative study. Food Hydrocoll. 157 https://doi.org/10.1016/j.foodhyd.2024.110427 (2024).
-
Oliveira, R. L. et al. Synthesis and characterization of Methylcellulose produced from bacterial cellulose under heterogeneous condition. J. Braz. Chem. Soc. https://doi.org/10.5935/0103-5053.20150163 (2015).
-
Ghozali, M., Meliana, Y., Masruchin, N., Rusmana, D. & Chalid, M. Preparation and characterization of Arenga pinnata thermoplastic starch/bacterial cellulose nanofiber biocomposites via in-situ twin screw extrusion. Int. J. Biol. Macromol. 261, 129792. https://doi.org/10.1016/j.ijbiomac.2024.129792 (2024).
-
Machmudah, S. Subcritical water extraction of Xanthone from mangosteen (Garcinia Mangostana Linn) pericarp. J. Adv. Chem. Eng. 05 https://doi.org/10.4172/2090-4568.1000117 (2015).
-
French, A. D. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21, 885–896. https://doi.org/10.1007/s10570-013-0030-4 (2013).
-
Quan, V. M., Torgbo, S., Kamonsutthipaijit, N. & Sukyai, P. In situ Preparation of bacterial cellulose/hydroxyapatite scaffold in colloidal culture media containing gum tragacanth. Cellulose 31, 1787–1800. https://doi.org/10.1007/s10570-023-05711-w (2024).
-
Padmanabhan, S. K., Lionetto, F., Nisi, R., Stoppa, M. & Licciulli, A. Sustainable production of stiff and crystalline bacterial cellulose from orange Peel extract. Sustainability 14 https://doi.org/10.3390/su14042247 (2022).
-
Hwang, P. A., Liu, Y. C. & Hsu, F. Y. Enhancement of the mechanical and hydration properties of biomedical-grade bacterial cellulose using laminaria Japonica extract. Int. J. Biol. Macromol. 308, 142688. https://doi.org/10.1016/j.ijbiomac.2025.142688 (2025).
-
Kumar, A., Dhir, V., Sharma, S., Sharma, A. & Singh, S. Efficacy of Methylprednisolone acetate versus triamcinolone acetonide intra-articular knee injection in patients with chronic inflammatory arthritis: a 24-week randomized controlled trial. Clin. Ther. 39, 150–158. https://doi.org/10.1016/j.clinthera.2016.11.023 (2017).
-
Gunter, N. V., Teh, S. S., Lim, Y. M. & Mah, S. H. Natural Xanthones and skin inflammatory diseases: multitargeting mechanisms of action and potential application. Front. Pharmacol. 11 https://doi.org/10.3389/fphar.2020.594202 (2020).
-
Guo, H. W. et al. Mangiferin attenuates TH1/TH2 cytokine imbalance in an ovalbumin-induced asthmatic mouse model. PLoS One. 9, e100394. https://doi.org/10.1371/journal.pone.0100394 (2014).
-
Deng, X. et al. Mechanisms of rapid bactericidal and anti-biofilm alpha-mangostin in vitro activity against Staphylococcus aureus. Pol. J. Microbiol. 72, 199–208. https://doi.org/10.33073/pjm-2023-021 (2023).
-
Tonali Blanco-Ayala. et al. Antioxidant properties of Xanthones from Calophyllum brasiliense: prevention of oxidative damage induced by FeSO4. BMC Complement. Altern. Medicine. 13, 262. https://doi.org/10.1186/1472-6882-13-262 (2013).
-
Szumala, P. & Wysocka, I. Effect of gelation and storage conditions on the oxidative stability of microemulsion and nanoemulsion delivery systems. Eur. J. Pharm. Sci. 124, 17–25. https://doi.org/10.1016/j.ejps.2018.08.021 (2018).
-
Park, D., Kim, J. W., Shin, K. & Kim, J. W. Bacterial cellulose nanofibrils-reinforced composite hydrogels for mechanical compression-responsive on-demand drug release. Carbohydr. Polym. 272, 118459. https://doi.org/10.1016/j.carbpol.2021.118459 (2021).
-
Das, R., Suksaeree, J. & Chuchote, C. Formulation and characterization of topical anti-acne spot gel containing herbal extracts. MATEC Web of Conferences 237, (2018). https://doi.org/10.1051/matecconf/201823702005
-
Bianchet, R. T., Cubas, V., Machado, A. L., Siegel Moecke, E. H. & M. M. & Applicability of bacterial cellulose in cosmetics – bibliometric review. Biotechnol. Rep. 27 https://doi.org/10.1016/j.btre.2020.e00502 (2020).
-
Lee, H. J. & Kim, M. Skin barrier function and the Microbiome. Int. J. Mol. Sci. 23 https://doi.org/10.3390/ijms232113071 (2022).
-
Apriani, E. F., Kornelia, N. & Amriani, A. Optimizing gel formulations using carbopol 940 and sodium alginate containing andrographis paniculata extract for burn-wound healing. Jurnal Farmasi Dan. Ilmu Kefarmasian Indonesia. 10, 300–311. https://doi.org/10.20473/jfiki.v10i32023.300-311 (2023).
-
Asasutjarit, R. et al. Physicochemical properties of alpha-mangostin loaded nanomeulsions prepared by ultrasonication technique. Heliyon 5, e02465. https://doi.org/10.1016/j.heliyon.2019.e02465 (2019).
