Fungal extracts influence lifespan and immune responses in the Carniolan honey bee (Apis mellifera carnica, Pollmann 1879)

fungal-extracts-influence-lifespan-and-immune-responses-in-the-carniolan-honey-bee-(apis-mellifera-carnica,-pollmann-1879)
Fungal extracts influence lifespan and immune responses in the Carniolan honey bee (Apis mellifera carnica, Pollmann 1879)

References

  1. Calderone, N. W. Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992–2009. PLoS One. 7 (5), e37235. https://doi.org/10.1371/journal.pone.0037235 (2012).

    Google Scholar 

  2. Hung, K. L. J., Kingston, J. M., Albrecht, M., Holway, D. A. & Kohn, J. R. The worldwide importance of honey bees as pollinators in natural habitats. Proc. R Soc. B-Biol Sci. 285 (1870), 20172140. https://doi.org/10.1098/rspb.2017.2140 (2018).

    Google Scholar 

  3. Fikadu, Z. The contribution of managed honey bees to crop pollination, food security, and economic stability: Case of Ethiopia. Open. Agric. J. 13 (1), 175–181. https://doi.org/10.2174/1874331501913010175 (2019).

    Google Scholar 

  4. Sperandio, G. et al. Beekeeping and honey bee colony health: A review and conceptualization of beekeeping management practices implemented in Europe. Sci. Total Environ. 696, 133795. https://doi.org/10.1016/j.scitotenv.2019.133795 (2019).

    Google Scholar 

  5. Paxton, R. J. Does infection by Nosema ceranae cause Colony Collapse Disorder in honey bees (Apis mellifera)? J. Apic. Res. 49 (1), 80–84. https://doi.org/10.3896/IBRA.1.49.1.11 (2010).

    Google Scholar 

  6. Dainat, B., vanEngelsdorp, D. & Neumann, P. Colony collapse disorder in Europe. Environ. Microbiol. Rep. 4 (1), 123–125. https://doi.org/10.1111/j.1758-2229.2011.00312.x (2012).

    Google Scholar 

  7. Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347 (6229), 1255957. https://doi.org/10.1126/science.1255957 (2015).

    Google Scholar 

  8. vanEngelsdorp, D. et al. Colony Collapse Disorder (CCD) and bee age impact honey bee pathophysiology. PLoS One. 12 (7), e0179535. https://doi.org/10.1371/journal.pone.0179535 (2017).

    Google Scholar 

  9. Kumar, S. S. Colony collapse disorder (CCD) in honey bees caused by EMF radiation. Bioinformation 14 (9), 521. https://doi.org/10.6026/97320630014521 (2018).

    Google Scholar 

  10. Branchiccela, B. et al. Impact of nutritional stress on the honeybee colony health. Sci. Rep. 9, 10156. https://doi.org/10.1038/s41598-019-46453-9 (2019).

    Google Scholar 

  11. Ansaloni, L. S., Kristl, J., Domingues, C. E. C. & Gregorc, A. An overview of the nutritional requirements of honey bees (Apis mellifera Linnaeus, 1758). Insects 16 (1), 97. https://doi.org/10.3390/insects16010097 (2025).

    Google Scholar 

  12. FAO & Apimondia, I. Z. S. L. T. Good beekeeping practices for sustainable apiculture. FAO Anim. Prod. Health Guidelines No. https://doi.org/10.4060/cb5353en (2021). 25Rome.

    Google Scholar 

  13. Larsen, A., Reynaldi, F. J. & Guzmán-Novoa, E. Fundaments of the honey bee (Apis mellifera) immune system. Rev. Rev mex de cienc. pecuarias. 10 (3), 705–728. https://doi.org/10.22319/rmcp.v10i3.4785 (2019).

    Google Scholar 

  14. Nikolenko, A. G., Saltykova, E. S. & Gaifullina, L. R. Molecular mechanisms of antioxidant protective processes in honeybee Apis mellifera, in: Farooqui, T., Farooqui, A.A. (Eds.), Oxidative stress in vertebrates and invertebrates: molecular aspects of cell signaling, 279–293New Jersey, (2011).

  15. Even, N., Devaud, J. M. & Barron, A. B. General stress responses in the honey bee. Insects 3 (4), 1271–1298. https://doi.org/10.3390/insects3041271 (2012).

    Google Scholar 

  16. Daiber, A. & Münzel, T. Special issue impact of environmental pollution and stress on redox signaling and oxidative stress pathways. Redox Biol. 37, 101621. https://doi.org/10.1016/j.redox.2020.101621 (2020).

    Google Scholar 

  17. Migdał, P. et al. Biochemical Indicators and Mortality in Honey Bee (Apis mellifera) Workers after Oral Exposure to Plant Protection Products and Their Mixtures. Agriculture 14, 5. https://doi.org/10.3390/agriculture14010005 (2024).

    Google Scholar 

  18. Strachecka, A. et al. The antioxidant system was unexpectedly strongly suppressed in apis mellifera worker bees emerged from larvae reared on combs adulterated with paraffin or stearin. Sci. Rep. 15, 20363. https://doi.org/10.1038/s41598-025-08596-w (2025).

    Google Scholar 

  19. Kramer, B. H. et al. Oxidative stress and senescence in social insects: A significant but inconsistent link? Philosophical Trans. Royal Soc. B: Biol. Sci. 376 (1823). https://doi.org/10.1098/rstb.2019.0732 (2021).

  20. Skowronek, P., Wójcik, Ł., Strachecka, A. & Fat Body—Multifunctional Insect Tissue Insects, 12, 547 ; https://doi.org/10.3390/insects12060547 (2021).

    Google Scholar 

  21. Kocot, J., Kiełczykowska, M., Luchowska-Kocot, D., Kurzepa, J. & Musik, I. Antioxidant Potential of Propolis, Bee Pollen, and Royal Jelly: Possible Medical Application. Oxid. Med. Cell. Longev. https://doi.org/10.1155/2018/7074209 (2018).

    Google Scholar 

  22. El Ghouizi, A. et al. Bee Pollen as Functional Food: Insights into Its Composition and Therapeutic Properties. Antioxidants (Basel). 12(3), 557 (2023). https://doi.org/10.3390/antiox12030557

  23. Bryś, M. S. & Strachecka, A. The Key Role of Amino Acids in Pollen Quality and Honey Bee Physiology-A Review. Molecules 29 (11), 2605. https://doi.org/10.3390/molecules29112605 (2024).

    Google Scholar 

  24. Farjan, M., Dmitryjuk, M., Lipiński, Z., Biernat-Łopieńska, E. & Żółtowska, K. Supplementation of the Honey Bee Diet with Vitamin C: The Effect on the Antioxidative System of Apis mellifera carnica Brood at Different Stages. J. Apic. Res. 51, 263–270. https://doi.org/10.3896/IBRA.1.51.3.07 (2012).

    Google Scholar 

  25. Farjan, M., Łopieńska-Biernat, E., Lipiński, Z., Dmitryjuk, M. & ZóŁtowska, K. Supplementing with Vitamin C the Diet of Honeybees (Apis mellifera carnica) Parasitized with Varroa destructor: Effects on Antioxidative Status. Parasitology 141, 770–776. https://doi.org/10.1017/S0031182013002126 (2014).

    Google Scholar 

  26. Strachecka, A. et al. Unexpectedly Strong Effect of Caffeine on the Vitality of Western Honeybees (Apis mellifera). Biochem. (Mosc). 79, 1192–1201. https://doi.org/10.1134/S0006297914110066 (2014).

    Google Scholar 

  27. Jovanovic, N. M. et al. Plant-based supplement containing B-complex vitamins can improve bee health and increase colony performance. Prev. Vet. Med. 190, 105322. https://doi.org/10.1016/j.prevetmed.2021.105322 (2021).

    Google Scholar 

  28. Noordyke, E. R., van Santen, E. & Ellis, J. D. Evaluating the strength of western honey bee (Apis mellifera L.) colonies fed pollen substitutes over winter. J. Appl. Entomol. 146 (3), 291–300. https://doi.org/10.1111/jen.12957 (2022).

    Google Scholar 

  29. Skowronek, P., Wójcik, Ł. & Strachecka, A. Impressive Impact of Hemp Extract on Antioxidant System in Honey Bee (Apis mellifera) Organism. Antioxidants 11, 707. https://doi.org/10.3390/antiox11040707 (2022).

    Google Scholar 

  30. Skowronek, P. & Strachecka, A. Cannabidiol (CBD) supports the honeybee worker organism by activating the antioxidant system. Antioxidants 12 (2), 279. https://doi.org/10.3390/antiox12020279 (2023).

    Google Scholar 

  31. García-Vicente, E. J. et al. Effects of feeding with a protein liquid supplement on productivity, mortality and health of Apis mellifera hives in southwestern Spain. Res. Vet. Sci. 169, 105173. https://doi.org/10.1016/j.rvsc.2024.105173 (2024).

    Google Scholar 

  32. El-Din, H. S., Radawan, H., Ghramh, H. A. & Al Naggar, Y. A novel fish protein hydrolysate supplement enhances honey bee foraging activity and colony strength: A pilot study. PLoS One. 20 (5), e0323423. https://doi.org/10.1371/journal.pone.0323423 (2025).

    Google Scholar 

  33. Hillyer, J. F. & Pass, G. The insect circulatory system: structure, function, and evolution. Annu. Rev. Entomol. 65 (1), 121–143. https://doi.org/10.1146/annurev-ento-011019-025003 (2020).

    Google Scholar 

  34. Kunc, M. et al. The year of the honey bee (Apis mellifera L.) with respect to its physiology and immunity: A search for biochemical markers of longevity. Insects 10 (8), 244. https://doi.org/10.3390/insects10080244 (2019).

    Google Scholar 

  35. Amdam, G. V., Hartfelder, K., Norberg, K., Hagen, A. & Omholt, S. W. Altered physiology in worker honey bees (Hymenoptera: Apidae) infested with the mite Varroa destructor (Acari: Varroidae): a factor in colony loss during overwintering? J. Econ. Entomol. 97 (3), 741–747. https://doi.org/10.1093/jee/97.3.741 (2004).

    Google Scholar 

  36. Brandt, A., Gorenflo, A., Siede, R., Meixner, M. & Büchler, R. The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L). J. Insect Physiol. 86, 40–47. https://doi.org/10.1016/j.jinsphys.2016.01.001 (2016).

    Google Scholar 

  37. Dziechciarz, P., Strachecka, A., Borsuk, G. & Olszewski, K. Effect of rearing in small-cell combs on activities of catalase and superoxide dismutase and total antioxidant capacity in the hemolymph of Apis mellifera workers. Antioxidants 12 (3), 709. https://doi.org/10.3390/antiox12030709 (2023).

    Google Scholar 

  38. Bryś, M. S., Olszewski, K., Bartoń, M. & Strachecka, A. Changes in the activities of antioxidant enzymes in the fat body and hemolymph of Apis mellifera L. due to pollen monodiets. Antioxidants 14 (1), 69. https://doi.org/10.3390/antiox14010069 (2025).

    Google Scholar 

  39. Kunat-Budzyńska, M., Staniszewska, P., Olszewski, K. & Strachecka, A. Antioxidant activities in the hemolymph and fat body of physiologically and prematurely aging bees (Apis mellifera). Antioxidants 14 (4), 373. https://doi.org/10.3390/antiox14040373 (2025).

    Google Scholar 

  40. Stamets, P. E. et al. Extracts of polypore mushroom mycelia reduce viruses in honey bees. Sci. Rep. 8 (1), 13936. https://doi.org/10.1038/s41598-018-32194-8 (2018).

    Google Scholar 

  41. Stevanovic, J. et al. V. The effect of Agaricus brasiliensis extract supplementation on honey bee colonies. Acad. Bras. Cienc. 90 (1), 219–229. https://doi.org/10.1590/0001-3765201820150182 (2018).

    Google Scholar 

  42. Glavinic, U. et al. Effects of Agaricus bisporus mushroom extract on honey bees infected with Nosema ceranae. Insects 12 (10), 915. https://doi.org/10.3390/insects12100915 (2021).

    Google Scholar 

  43. Johnson, R. M., Dahlgren, L., Siegfried, B. D. & Ellis, M. D. Acaricide, fungicide and drug interactions in honey bees (Apis mellifera). PLoS One. 8 (1), e54092. https://doi.org/10.1371/journal.pone.0054092 (2013).

    Google Scholar 

  44. Foster, L. J., Tsvetkov, N. & McAfee, A. Mechanisms of pathogen and pesticide resistance in honey bees. Physiology 39 (4), 193–207. https://doi.org/10.1152/physiol.00033.2023 (2024).

    Google Scholar 

  45. Hamiduzzaman, M. M., Sinia, A., Guzman-Novoa, E. & Goodwin, P. H. Entomopathogenic fungi as potential biocontrol agents of the ecto-parasitic mite, Varroa destructor, and their effect on the immune response of honey bees (Apis mellifera L). J. Invertebr Pathol. 111 (3), 237–243. https://doi.org/10.1016/j.jip.2012.09.001 (2012).

    Google Scholar 

  46. Skowronek, P., Wójcik, Ł. & Strachecka, A. CBD supplementation has a positive effect on the activity of the proteolytic system and biochemical markers of honey bees (Apis mellifera) in the apiary. Animals 12 (18), 2313. https://doi.org/10.3390/ani12182313 (2022).

    Google Scholar 

  47. Parish, J. B., Scott, E. S. & Hogendoorn, K. Nutritional benefit of fungal spores for honey bee workers. Sci. Rep. 10, 15671. https://doi.org/10.1038/s41598-020-72758-1 (2020).

    Google Scholar 

  48. Paleolog, J. et al. Imidacloprid markedly affects hemolymph proteolysis, biomarkers, DNA global methylation, and the cuticle proteolytic layer in western honeybees. Apidologie 51, 620–630. https://doi.org/10.1007/s13592-020-00747-4 (2020).

    Google Scholar 

  49. Strachecka, A. J., Olszewski, K. & Paleolog, J. Curcumin stimulates biochemical mechanisms of Apis mellifera resistance and extends the apian life-span. J. Apic. Sci. 59 (1), 129–141. https://doi.org/10.1515/JAS-2015-0014 (2015).

    Google Scholar 

  50. Strachecka, A., Olszewski, K. & Paleolog, J. Varroa treatment with bromfenvinphos markedly suppresses honeybee biochemical defence levels. Entomol. Exp. Appl. 160 (1), 57–71. https://doi.org/10.1111/eea.12451 (2016).

    Google Scholar 

  51. Paleolog, J., Strachecka, A., Burzyński, S., Olszewski, K. & Borsuk, G. The larval diet supplemented with the low-molecular epigenetic switch sodium phenylacetylglutaminate influences the worker cuticle proteolytic system in Apis mellifera L. J. Apic. Sci. 55 (2), 73–83 (2011).

    Google Scholar 

  52. Burzyński, S. et al. Changed gene expression and longevity in honeybees (Apis mellifera) fed with phenylbutyrate- and phenylacetylglutaminate-supplemented diet. Med. Weter. 69 (12), 753–759 (2013).

    Google Scholar 

  53. Peng, Z. W., Hung, Y. T. & Wu, M. C. Mechanistic exploration of royal jelly production in caged honey bees (Apis mellifera). Sci. Rep. 14, 30277. https://doi.org/10.1038/s41598-024-82094-3 (2024).

    Google Scholar 

  54. Weirich, G. F., Collins, A. M. & Williams, V. P. Antioxidant enzymes in the honey bee, Apis mellifera. Apidologie 33, 3–14. https://doi.org/10.1051/apido:2001001 (2002).

    Google Scholar 

  55. Olgun, T., Dayıoğlu, M. & Özsoy, N. Pesticide and pathogen induced oxidative stress in honey bees (Apis mellifera L). Mellifera 20 (2), 32–52 (2020).

    Google Scholar 

  56. Ahmad, M. F. Ganoderma lucidum: Persuasive biologically active constituents and their health endorsement. Biomed. Pharmacother. 107, 507–519. https://doi.org/10.1016/j.biopha.2018.08.036 (2018).

    Google Scholar 

  57. Cui, P. et al. Community composition, bacterial symbionts, antibacterial and antioxidant activities of honeybee-associated fungi. BMC Microbiol. 22, 168. https://doi.org/10.1186/s12866-022-02580-4 (2022).

    Google Scholar 

  58. Ofodile, L. N. et al. J. Antimicrobial activity of some Ganoderma species from Nigeria. Phytother Res. 19 (4), 310–313. https://doi.org/10.1002/ptr.1641 (2005).

    Google Scholar 

  59. Ajibola, O. O. et al. Turkey tail mushroom (Trametes versicolor): An edible macrofungi with immense medicinal properties. Curr. Opin. Food Sci. 58, 101191. https://doi.org/10.1016/j.cofs.2024.101191 (2024).

    Google Scholar 

  60. Camilleri, E. et al. A brief overview of the medicinal and nutraceutical importance of Inonotus obliquus (chaga) mushrooms. Heliyon 10(15), e35638 (2024). https://doi.org/10.1016/j.heliyon.2024.e35638

  61. Qiu, Y. et al. Bioactive substances in Hericium erinaceus and their biological properties: A review. Food Sci. Hum. Wellness. 13 (4), 1825–1844. https://doi.org/10.26599/FSHW.2022.9250152 (2024).

    Google Scholar 

  62. Teng, B. S. et al. Zhou, P. A protein tyrosine phosphatase 1B activity inhibitor from the fruiting bodies of Ganoderma lucidum (Fr.) Karst and its hypoglycemic potency on streptozotocin-induced type 2 diabetic mice. J. Agric. Food Chem. 59 (12), 6492–6500. https://doi.org/10.1021/jf200527y (2011).

    Google Scholar 

  63. Sudheesh, N. A., Ajith, T. A. & Janardhanan, K. K. Ganoderma lucidum ameliorate mitochondrial damage in isoproterenol-induced myocardial infarction in rats by enhancing the activities of TCA cycle enzymes and respiratory chain complexes. Int. J. Cardiol. 165, 117–125. https://doi.org/10.1016/j.ijcard.2011.07.103 (2013).

    Google Scholar 

  64. Taofiq, O. et al. F. R. The potential of Ganoderma lucidum extracts as bioactive ingredients in topical formulations, beyond its nutritional benefits. Food Chem. Toxicol. 108, 139–147. https://doi.org/10.1016/j.fct.2017.07.051 (2017).

    Google Scholar 

  65. Zhao, R. L. & He, Y. M. Network pharmacology analysis of the anti-cancer pharmacological mechanisms of Ganoderma lucidum extract with experimental support using Hepa1-6-bearing C57 BL/6 mice. J. Ethnopharmacol. 210, 287–295. https://doi.org/10.1016/j.jep.2017.08.041 (2018).

    Google Scholar 

  66. Cui, Y., Kim, D. S. & Park, K. C. Antioxidant effect of Inonotus obliquus. J. Ethnopharmacol. 96 (1–2), 79–85. https://doi.org/10.1016/j.jep.2004.08.037 (2005).

    Google Scholar 

  67. Shahzad, F., Anderson, D. & Najafzadeh, M. The antiviral, anti-inflammatory effects of natural medicinal herbs and mushrooms and SARS-CoV-2 infection. Nutrients 12 (9), 2573. https://doi.org/10.3390/nu12092573 (2020).

    Google Scholar 

  68. Mili, S. & Rami, N. Bioactive chattels and health benefit applications of Trametes versicolor. Asian J. Biol. Life Sci. 11 (1), 29–33. https://doi.org/10.5530/ajbls.2022.11.4 (2022).

    Google Scholar 

  69. Willcox, B. K. et al. Emerging threats and opportunities to managed bee species in European agricultural systems: a horizon scan. Sci. Rep. 13 (1), 18099. https://doi.org/10.1038/s41598-023-45279-w (2023).

    Google Scholar 

  70. Hristov, P., Shumkova, R., Palova, N. & Neov, B. Honey bee colony losses: Why are honey bees disappearing? Sociobiology 68 (1), e5851. https://doi.org/10.13102/sociobiology.v68i1.5851 (2021).

    Google Scholar 

  71. Domingues, C. E. C. et al. Thiamethoxam and picoxystrobin reduce the survival and overload the Hepato-Nephrocitic System of the Africanized honeybee. Chemosphere 186, 994–1005. https://doi.org/10.1016/j.chemosphere.2017.07.133 (2017).

    Google Scholar 

  72. Balsamo, P. J. et al. Impact of sublethal doses of thiamethoxam and inoculation on the Hepato-Nephrocitic System in young Africanized. J. Apic. Res. 58, 1–12. https://doi.org/10.1080/00218839.2019.1686575 (2019).

    Google Scholar 

Download references