References
-
Calderone, N. W. Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992–2009. PLoS One. 7 (5), e37235. https://doi.org/10.1371/journal.pone.0037235 (2012).
-
Hung, K. L. J., Kingston, J. M., Albrecht, M., Holway, D. A. & Kohn, J. R. The worldwide importance of honey bees as pollinators in natural habitats. Proc. R Soc. B-Biol Sci. 285 (1870), 20172140. https://doi.org/10.1098/rspb.2017.2140 (2018).
-
Fikadu, Z. The contribution of managed honey bees to crop pollination, food security, and economic stability: Case of Ethiopia. Open. Agric. J. 13 (1), 175–181. https://doi.org/10.2174/1874331501913010175 (2019).
-
Sperandio, G. et al. Beekeeping and honey bee colony health: A review and conceptualization of beekeeping management practices implemented in Europe. Sci. Total Environ. 696, 133795. https://doi.org/10.1016/j.scitotenv.2019.133795 (2019).
-
Paxton, R. J. Does infection by Nosema ceranae cause Colony Collapse Disorder in honey bees (Apis mellifera)? J. Apic. Res. 49 (1), 80–84. https://doi.org/10.3896/IBRA.1.49.1.11 (2010).
-
Dainat, B., vanEngelsdorp, D. & Neumann, P. Colony collapse disorder in Europe. Environ. Microbiol. Rep. 4 (1), 123–125. https://doi.org/10.1111/j.1758-2229.2011.00312.x (2012).
-
Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347 (6229), 1255957. https://doi.org/10.1126/science.1255957 (2015).
-
vanEngelsdorp, D. et al. Colony Collapse Disorder (CCD) and bee age impact honey bee pathophysiology. PLoS One. 12 (7), e0179535. https://doi.org/10.1371/journal.pone.0179535 (2017).
-
Kumar, S. S. Colony collapse disorder (CCD) in honey bees caused by EMF radiation. Bioinformation 14 (9), 521. https://doi.org/10.6026/97320630014521 (2018).
-
Branchiccela, B. et al. Impact of nutritional stress on the honeybee colony health. Sci. Rep. 9, 10156. https://doi.org/10.1038/s41598-019-46453-9 (2019).
-
Ansaloni, L. S., Kristl, J., Domingues, C. E. C. & Gregorc, A. An overview of the nutritional requirements of honey bees (Apis mellifera Linnaeus, 1758). Insects 16 (1), 97. https://doi.org/10.3390/insects16010097 (2025).
-
FAO & Apimondia, I. Z. S. L. T. Good beekeeping practices for sustainable apiculture. FAO Anim. Prod. Health Guidelines No. https://doi.org/10.4060/cb5353en (2021). 25Rome.
-
Larsen, A., Reynaldi, F. J. & Guzmán-Novoa, E. Fundaments of the honey bee (Apis mellifera) immune system. Rev. Rev mex de cienc. pecuarias. 10 (3), 705–728. https://doi.org/10.22319/rmcp.v10i3.4785 (2019).
-
Nikolenko, A. G., Saltykova, E. S. & Gaifullina, L. R. Molecular mechanisms of antioxidant protective processes in honeybee Apis mellifera, in: Farooqui, T., Farooqui, A.A. (Eds.), Oxidative stress in vertebrates and invertebrates: molecular aspects of cell signaling, 279–293New Jersey, (2011).
-
Even, N., Devaud, J. M. & Barron, A. B. General stress responses in the honey bee. Insects 3 (4), 1271–1298. https://doi.org/10.3390/insects3041271 (2012).
-
Daiber, A. & Münzel, T. Special issue impact of environmental pollution and stress on redox signaling and oxidative stress pathways. Redox Biol. 37, 101621. https://doi.org/10.1016/j.redox.2020.101621 (2020).
-
Migdał, P. et al. Biochemical Indicators and Mortality in Honey Bee (Apis mellifera) Workers after Oral Exposure to Plant Protection Products and Their Mixtures. Agriculture 14, 5. https://doi.org/10.3390/agriculture14010005 (2024).
-
Strachecka, A. et al. The antioxidant system was unexpectedly strongly suppressed in apis mellifera worker bees emerged from larvae reared on combs adulterated with paraffin or stearin. Sci. Rep. 15, 20363. https://doi.org/10.1038/s41598-025-08596-w (2025).
-
Kramer, B. H. et al. Oxidative stress and senescence in social insects: A significant but inconsistent link? Philosophical Trans. Royal Soc. B: Biol. Sci. 376 (1823). https://doi.org/10.1098/rstb.2019.0732 (2021).
-
Skowronek, P., Wójcik, Ł., Strachecka, A. & Fat Body—Multifunctional Insect Tissue Insects, 12, 547 ; https://doi.org/10.3390/insects12060547 (2021).
-
Kocot, J., Kiełczykowska, M., Luchowska-Kocot, D., Kurzepa, J. & Musik, I. Antioxidant Potential of Propolis, Bee Pollen, and Royal Jelly: Possible Medical Application. Oxid. Med. Cell. Longev. https://doi.org/10.1155/2018/7074209 (2018).
-
El Ghouizi, A. et al. Bee Pollen as Functional Food: Insights into Its Composition and Therapeutic Properties. Antioxidants (Basel). 12(3), 557 (2023). https://doi.org/10.3390/antiox12030557
-
Bryś, M. S. & Strachecka, A. The Key Role of Amino Acids in Pollen Quality and Honey Bee Physiology-A Review. Molecules 29 (11), 2605. https://doi.org/10.3390/molecules29112605 (2024).
-
Farjan, M., Dmitryjuk, M., Lipiński, Z., Biernat-Łopieńska, E. & Żółtowska, K. Supplementation of the Honey Bee Diet with Vitamin C: The Effect on the Antioxidative System of Apis mellifera carnica Brood at Different Stages. J. Apic. Res. 51, 263–270. https://doi.org/10.3896/IBRA.1.51.3.07 (2012).
-
Farjan, M., Łopieńska-Biernat, E., Lipiński, Z., Dmitryjuk, M. & ZóŁtowska, K. Supplementing with Vitamin C the Diet of Honeybees (Apis mellifera carnica) Parasitized with Varroa destructor: Effects on Antioxidative Status. Parasitology 141, 770–776. https://doi.org/10.1017/S0031182013002126 (2014).
-
Strachecka, A. et al. Unexpectedly Strong Effect of Caffeine on the Vitality of Western Honeybees (Apis mellifera). Biochem. (Mosc). 79, 1192–1201. https://doi.org/10.1134/S0006297914110066 (2014).
-
Jovanovic, N. M. et al. Plant-based supplement containing B-complex vitamins can improve bee health and increase colony performance. Prev. Vet. Med. 190, 105322. https://doi.org/10.1016/j.prevetmed.2021.105322 (2021).
-
Noordyke, E. R., van Santen, E. & Ellis, J. D. Evaluating the strength of western honey bee (Apis mellifera L.) colonies fed pollen substitutes over winter. J. Appl. Entomol. 146 (3), 291–300. https://doi.org/10.1111/jen.12957 (2022).
-
Skowronek, P., Wójcik, Ł. & Strachecka, A. Impressive Impact of Hemp Extract on Antioxidant System in Honey Bee (Apis mellifera) Organism. Antioxidants 11, 707. https://doi.org/10.3390/antiox11040707 (2022).
-
Skowronek, P. & Strachecka, A. Cannabidiol (CBD) supports the honeybee worker organism by activating the antioxidant system. Antioxidants 12 (2), 279. https://doi.org/10.3390/antiox12020279 (2023).
-
García-Vicente, E. J. et al. Effects of feeding with a protein liquid supplement on productivity, mortality and health of Apis mellifera hives in southwestern Spain. Res. Vet. Sci. 169, 105173. https://doi.org/10.1016/j.rvsc.2024.105173 (2024).
-
El-Din, H. S., Radawan, H., Ghramh, H. A. & Al Naggar, Y. A novel fish protein hydrolysate supplement enhances honey bee foraging activity and colony strength: A pilot study. PLoS One. 20 (5), e0323423. https://doi.org/10.1371/journal.pone.0323423 (2025).
-
Hillyer, J. F. & Pass, G. The insect circulatory system: structure, function, and evolution. Annu. Rev. Entomol. 65 (1), 121–143. https://doi.org/10.1146/annurev-ento-011019-025003 (2020).
-
Kunc, M. et al. The year of the honey bee (Apis mellifera L.) with respect to its physiology and immunity: A search for biochemical markers of longevity. Insects 10 (8), 244. https://doi.org/10.3390/insects10080244 (2019).
-
Amdam, G. V., Hartfelder, K., Norberg, K., Hagen, A. & Omholt, S. W. Altered physiology in worker honey bees (Hymenoptera: Apidae) infested with the mite Varroa destructor (Acari: Varroidae): a factor in colony loss during overwintering? J. Econ. Entomol. 97 (3), 741–747. https://doi.org/10.1093/jee/97.3.741 (2004).
-
Brandt, A., Gorenflo, A., Siede, R., Meixner, M. & Büchler, R. The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L). J. Insect Physiol. 86, 40–47. https://doi.org/10.1016/j.jinsphys.2016.01.001 (2016).
-
Dziechciarz, P., Strachecka, A., Borsuk, G. & Olszewski, K. Effect of rearing in small-cell combs on activities of catalase and superoxide dismutase and total antioxidant capacity in the hemolymph of Apis mellifera workers. Antioxidants 12 (3), 709. https://doi.org/10.3390/antiox12030709 (2023).
-
Bryś, M. S., Olszewski, K., Bartoń, M. & Strachecka, A. Changes in the activities of antioxidant enzymes in the fat body and hemolymph of Apis mellifera L. due to pollen monodiets. Antioxidants 14 (1), 69. https://doi.org/10.3390/antiox14010069 (2025).
-
Kunat-Budzyńska, M., Staniszewska, P., Olszewski, K. & Strachecka, A. Antioxidant activities in the hemolymph and fat body of physiologically and prematurely aging bees (Apis mellifera). Antioxidants 14 (4), 373. https://doi.org/10.3390/antiox14040373 (2025).
-
Stamets, P. E. et al. Extracts of polypore mushroom mycelia reduce viruses in honey bees. Sci. Rep. 8 (1), 13936. https://doi.org/10.1038/s41598-018-32194-8 (2018).
-
Stevanovic, J. et al. V. The effect of Agaricus brasiliensis extract supplementation on honey bee colonies. Acad. Bras. Cienc. 90 (1), 219–229. https://doi.org/10.1590/0001-3765201820150182 (2018).
-
Glavinic, U. et al. Effects of Agaricus bisporus mushroom extract on honey bees infected with Nosema ceranae. Insects 12 (10), 915. https://doi.org/10.3390/insects12100915 (2021).
-
Johnson, R. M., Dahlgren, L., Siegfried, B. D. & Ellis, M. D. Acaricide, fungicide and drug interactions in honey bees (Apis mellifera). PLoS One. 8 (1), e54092. https://doi.org/10.1371/journal.pone.0054092 (2013).
-
Foster, L. J., Tsvetkov, N. & McAfee, A. Mechanisms of pathogen and pesticide resistance in honey bees. Physiology 39 (4), 193–207. https://doi.org/10.1152/physiol.00033.2023 (2024).
-
Hamiduzzaman, M. M., Sinia, A., Guzman-Novoa, E. & Goodwin, P. H. Entomopathogenic fungi as potential biocontrol agents of the ecto-parasitic mite, Varroa destructor, and their effect on the immune response of honey bees (Apis mellifera L). J. Invertebr Pathol. 111 (3), 237–243. https://doi.org/10.1016/j.jip.2012.09.001 (2012).
-
Skowronek, P., Wójcik, Ł. & Strachecka, A. CBD supplementation has a positive effect on the activity of the proteolytic system and biochemical markers of honey bees (Apis mellifera) in the apiary. Animals 12 (18), 2313. https://doi.org/10.3390/ani12182313 (2022).
-
Parish, J. B., Scott, E. S. & Hogendoorn, K. Nutritional benefit of fungal spores for honey bee workers. Sci. Rep. 10, 15671. https://doi.org/10.1038/s41598-020-72758-1 (2020).
-
Paleolog, J. et al. Imidacloprid markedly affects hemolymph proteolysis, biomarkers, DNA global methylation, and the cuticle proteolytic layer in western honeybees. Apidologie 51, 620–630. https://doi.org/10.1007/s13592-020-00747-4 (2020).
-
Strachecka, A. J., Olszewski, K. & Paleolog, J. Curcumin stimulates biochemical mechanisms of Apis mellifera resistance and extends the apian life-span. J. Apic. Sci. 59 (1), 129–141. https://doi.org/10.1515/JAS-2015-0014 (2015).
-
Strachecka, A., Olszewski, K. & Paleolog, J. Varroa treatment with bromfenvinphos markedly suppresses honeybee biochemical defence levels. Entomol. Exp. Appl. 160 (1), 57–71. https://doi.org/10.1111/eea.12451 (2016).
-
Paleolog, J., Strachecka, A., Burzyński, S., Olszewski, K. & Borsuk, G. The larval diet supplemented with the low-molecular epigenetic switch sodium phenylacetylglutaminate influences the worker cuticle proteolytic system in Apis mellifera L. J. Apic. Sci. 55 (2), 73–83 (2011).
-
Burzyński, S. et al. Changed gene expression and longevity in honeybees (Apis mellifera) fed with phenylbutyrate- and phenylacetylglutaminate-supplemented diet. Med. Weter. 69 (12), 753–759 (2013).
-
Peng, Z. W., Hung, Y. T. & Wu, M. C. Mechanistic exploration of royal jelly production in caged honey bees (Apis mellifera). Sci. Rep. 14, 30277. https://doi.org/10.1038/s41598-024-82094-3 (2024).
-
Weirich, G. F., Collins, A. M. & Williams, V. P. Antioxidant enzymes in the honey bee, Apis mellifera. Apidologie 33, 3–14. https://doi.org/10.1051/apido:2001001 (2002).
-
Olgun, T., Dayıoğlu, M. & Özsoy, N. Pesticide and pathogen induced oxidative stress in honey bees (Apis mellifera L). Mellifera 20 (2), 32–52 (2020).
-
Ahmad, M. F. Ganoderma lucidum: Persuasive biologically active constituents and their health endorsement. Biomed. Pharmacother. 107, 507–519. https://doi.org/10.1016/j.biopha.2018.08.036 (2018).
-
Cui, P. et al. Community composition, bacterial symbionts, antibacterial and antioxidant activities of honeybee-associated fungi. BMC Microbiol. 22, 168. https://doi.org/10.1186/s12866-022-02580-4 (2022).
-
Ofodile, L. N. et al. J. Antimicrobial activity of some Ganoderma species from Nigeria. Phytother Res. 19 (4), 310–313. https://doi.org/10.1002/ptr.1641 (2005).
-
Ajibola, O. O. et al. Turkey tail mushroom (Trametes versicolor): An edible macrofungi with immense medicinal properties. Curr. Opin. Food Sci. 58, 101191. https://doi.org/10.1016/j.cofs.2024.101191 (2024).
-
Camilleri, E. et al. A brief overview of the medicinal and nutraceutical importance of Inonotus obliquus (chaga) mushrooms. Heliyon 10(15), e35638 (2024). https://doi.org/10.1016/j.heliyon.2024.e35638
-
Qiu, Y. et al. Bioactive substances in Hericium erinaceus and their biological properties: A review. Food Sci. Hum. Wellness. 13 (4), 1825–1844. https://doi.org/10.26599/FSHW.2022.9250152 (2024).
-
Teng, B. S. et al. Zhou, P. A protein tyrosine phosphatase 1B activity inhibitor from the fruiting bodies of Ganoderma lucidum (Fr.) Karst and its hypoglycemic potency on streptozotocin-induced type 2 diabetic mice. J. Agric. Food Chem. 59 (12), 6492–6500. https://doi.org/10.1021/jf200527y (2011).
-
Sudheesh, N. A., Ajith, T. A. & Janardhanan, K. K. Ganoderma lucidum ameliorate mitochondrial damage in isoproterenol-induced myocardial infarction in rats by enhancing the activities of TCA cycle enzymes and respiratory chain complexes. Int. J. Cardiol. 165, 117–125. https://doi.org/10.1016/j.ijcard.2011.07.103 (2013).
-
Taofiq, O. et al. F. R. The potential of Ganoderma lucidum extracts as bioactive ingredients in topical formulations, beyond its nutritional benefits. Food Chem. Toxicol. 108, 139–147. https://doi.org/10.1016/j.fct.2017.07.051 (2017).
-
Zhao, R. L. & He, Y. M. Network pharmacology analysis of the anti-cancer pharmacological mechanisms of Ganoderma lucidum extract with experimental support using Hepa1-6-bearing C57 BL/6 mice. J. Ethnopharmacol. 210, 287–295. https://doi.org/10.1016/j.jep.2017.08.041 (2018).
-
Cui, Y., Kim, D. S. & Park, K. C. Antioxidant effect of Inonotus obliquus. J. Ethnopharmacol. 96 (1–2), 79–85. https://doi.org/10.1016/j.jep.2004.08.037 (2005).
-
Shahzad, F., Anderson, D. & Najafzadeh, M. The antiviral, anti-inflammatory effects of natural medicinal herbs and mushrooms and SARS-CoV-2 infection. Nutrients 12 (9), 2573. https://doi.org/10.3390/nu12092573 (2020).
-
Mili, S. & Rami, N. Bioactive chattels and health benefit applications of Trametes versicolor. Asian J. Biol. Life Sci. 11 (1), 29–33. https://doi.org/10.5530/ajbls.2022.11.4 (2022).
-
Willcox, B. K. et al. Emerging threats and opportunities to managed bee species in European agricultural systems: a horizon scan. Sci. Rep. 13 (1), 18099. https://doi.org/10.1038/s41598-023-45279-w (2023).
-
Hristov, P., Shumkova, R., Palova, N. & Neov, B. Honey bee colony losses: Why are honey bees disappearing? Sociobiology 68 (1), e5851. https://doi.org/10.13102/sociobiology.v68i1.5851 (2021).
-
Domingues, C. E. C. et al. Thiamethoxam and picoxystrobin reduce the survival and overload the Hepato-Nephrocitic System of the Africanized honeybee. Chemosphere 186, 994–1005. https://doi.org/10.1016/j.chemosphere.2017.07.133 (2017).
-
Balsamo, P. J. et al. Impact of sublethal doses of thiamethoxam and inoculation on the Hepato-Nephrocitic System in young Africanized. J. Apic. Res. 58, 1–12. https://doi.org/10.1080/00218839.2019.1686575 (2019).
