Further characterisation of immortalised human lymphatic endothelial cells to explore their transcriptomic profile and VEGFC response

further-characterisation-of-immortalised-human-lymphatic-endothelial-cells-to-explore-their-transcriptomic-profile-and-vegfc-response
Further characterisation of immortalised human lymphatic endothelial cells to explore their transcriptomic profile and VEGFC response

References

  1. Martin-Almedina, S., Mortimer, P. S. & Ostergaard, P. Development and physiological functions of the lymphatic system: Insights from human genetic studies of primary lymphedema. Physiol. Rev. 101(4), 1809–1871. https://doi.org/10.1152/physrev.00006.2020 (2021).

    Google Scholar 

  2. Gordon, K. et al. Update and audit of the st george’s classification algorithm of primary lymphatic anomalies: A clinical and molecular approach to diagnosis. J. Med. Genet. 57(10), 653–659. https://doi.org/10.1136/jmedgenet-2019-106084 (2020).

    Google Scholar 

  3. Bonetti, G. et al. Low efficacy of genetic tests for the diagnosis of primary lymphedema prompts novel insights into the underlying molecular pathways. Int. J. Mol. Sci. 23(13), 7414. https://doi.org/10.3390/ijms23137414 (2022).

    Google Scholar 

  4. Mahmood, K. et al. Variant effect prediction tools assessed using independent, functional assay-based datasets: Implications for discovery and diagnostics. Hum. Genomics. 11(1), 10. https://doi.org/10.1186/s40246-017-0104-8 (2017).

    Google Scholar 

  5. MacArthur, D. G. et al. Guidelines for investigating causality of sequence variants in human disease. Nature 508(7497), 469–476. https://doi.org/10.1038/nature13127 (2014).

    Google Scholar 

  6. Brnich, S. E. et al. Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework. Genome Med. 12(1), 3. https://doi.org/10.1186/s13073-019-0690-2 (2019).

    Google Scholar 

  7. Ades, E. W. et al. HMEC-1: Establishment of an immortalized human microvascular endothelial cell line. J. Invest. Dermatol. 99(6), 683–690. https://doi.org/10.1111/1523-1747.ep12613748 (1992).

    Google Scholar 

  8. Rood, P. M., Calafat, J., von dem Borne, A. E., Gerritsen, W. R. & van der Schoot, C. E. Immortalisation of human bone marrow endothelial cells: Characterisation of new cell lines. Eur. J. Clin. Invest. 30(7), 618–629. https://doi.org/10.1046/j.1365-2362.2000.00672.x (2000).

    Google Scholar 

  9. Giacalone, J. C. et al. Generation of an immortalized human choroid endothelial cell line (iChEC-1) using an endothelial cell specific promoter. Microvasc. Res. 123, 50–57. https://doi.org/10.1016/j.mvr.2018.12.002 (2019).

    Google Scholar 

  10. Kerachian, M. A., Cournoyer, D., Harvey, E. J., Chow, T. & Séguin, C. Isolation and characterization of human bone-derived endothelial cells. Endothelium 14(2), 115–121. https://doi.org/10.1080/10623320701347062 (2007).

    Google Scholar 

  11. Kashyap, M. V., Ranjan, A. P., Shankardas, J. & Vishwanatha, J. K. Establishment of human retinal microvascular endothelial cells with extended life-span. In Vivo 27(6), 685–694 (2013).

    Google Scholar 

  12. van Leeuwen, E. B. et al. Characterization of immortalized human umbilical and iliac vein endothelial cell lines after transfection with SV40 large T-antigen. Blood Coagul Fibrinolysis. 11(1), 15–25 (2000).

    Google Scholar 

  13. Deng, L. et al. Gene expression in immortalized versus primary isolated cardiac endothelial cells. Sci. Rep. 10(1), 2241. https://doi.org/10.1038/s41598-020-59213-x (2020).

    Google Scholar 

  14. Schoppmann, S. F. et al. Telomerase-immortalized lymphatic and blood vessel endothelial cells are functionally stable and retain their lineage specificity. Microcirculation 11(3), 261–269. https://doi.org/10.1080/10739680490425967 (2004).

    Google Scholar 

  15. Nisato, R. E. et al. Generation and characterization of telomerase-transfected human lymphatic endothelial cells with an extended life span. Am. J. Pathol. 165(1), 11–24. https://doi.org/10.1016/S0002-9440(10)63271-3 (2004).

    Google Scholar 

  16. Frenkel, N. et al. Long-lived human lymphatic endothelial cells to study lymphatic biology and lymphatic vessel/tumor coculture in a 3D microfluidic model. ACS Biomater. Sci. Eng. 7(7), 3030–3042. https://doi.org/10.1021/acsbiomaterials.0c01378 (2021).

    Google Scholar 

  17. Bentley, K. et al. The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis. Nat. Cell. Biol. 16(4), 309–321. https://doi.org/10.1038/ncb2926 (2014).

    Google Scholar 

  18. Martin-Almedina, S. et al. EPHB4 kinase-inactivating mutations cause autosomal dominant lymphatic-related hydrops fetalis. J. Clin. Invest. 126(8), 3080–3088. https://doi.org/10.1172/JCI85794 (2016).

    Google Scholar 

  19. Mangion, J. et al. A gene for lymphedema-distichiasis maps to 16q24.3. Am. J. Hum. Genet. 65(2), 427–432. https://doi.org/10.1086/302500 (1999).

    Google Scholar 

  20. Greene, D. et al. Genetic association analysis of 77,539 genomes reveals rare disease etiologies. Nat. Med. 29(3), 679–688. https://doi.org/10.1038/s41591-023-02211-z (2023).

    Google Scholar 

  21. Vergel, M., Marin, J. J., Estevez, P. & Carnero, A. Cellular senescence as a target in cancer control. J. Aging Res. 2011, 725365. https://doi.org/10.4061/2011/725365 (2010).

    Google Scholar 

  22. Salama, R., Sadaie, M., Hoare, M. & Narita, M. Cellular senescence and its effector programs. Genes Dev. 28(2), 99–114. https://doi.org/10.1101/gad.235184.113 (2014).

    Google Scholar 

  23. Bloom, S. I., Islam, M. T., Lesniewski, L. A. & Donato, A. J. Mechanisms and consequences of endothelial cell senescence. Nat. Rev. Cardiol. 20(1), 38–51. https://doi.org/10.1038/s41569-022-00739-0 (2023).

    Google Scholar 

  24. Maciel-Barón, L. A. et al. Senescence associated secretory phenotype profile from primary lung mice fibroblasts depends on the senescence induction stimuli. Age 38(1), 26. https://doi.org/10.1007/s11357-016-9886-1 (2016).

    Google Scholar 

  25. Stein, G. H., Drullinger, L. F., Soulard, A. & Dulić, V. Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol. Cell Biol. 19(3), 2109–2117. https://doi.org/10.1128/MCB.19.3.2109 (1999).

    Google Scholar 

  26. Pontes-Quero, S. et al. High mitogenic stimulation arrests angiogenesis. Nat. Commun. 10, 2016. https://doi.org/10.1038/s41467-019-09875-7 (2019).

    Google Scholar 

  27. Tátrai, P. et al. Combined introduction of bmi-1 and hTERT immortalizes human adipose tissue-derived stromal cells with low risk of transformation. Biochem. Biophys. Res. Commun. 422(1), 28–35. https://doi.org/10.1016/j.bbrc.2012.04.088 (2012).

    Google Scholar 

  28. Chekmarev, J., Azad, M. G. & Richardson, D. R. The oncogenic signaling disruptor, NDRG1: Molecular and cellular mechanisms of activity. Cells 10(9), 2382. https://doi.org/10.3390/cells10092382 (2021).

    Google Scholar 

  29. Dufour, F. et al. TYRO3 as a molecular target for growth inhibition and apoptosis induction in bladder cancer. Br. J. Cancer. 120(5), 555–564. https://doi.org/10.1038/s41416-019-0397-6 (2019).

    Google Scholar 

  30. Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28(11), 1947–1951. https://doi.org/10.1002/pro.3715 (2019).

    Google Scholar 

  31. Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28(1), 27–30. https://doi.org/10.1093/nar/28.1.27 (2000).

    Google Scholar 

  32. Kanehisa, M., Furumichi, M., Sato, Y., Matsuura, Y. & Ishiguro-Watanabe, M. KEGG: Biological systems database as a model of the real world. Nucleic Acids Res. 53(D1), D672. https://doi.org/10.1093/nar/gkae909 (2025).

    Google Scholar 

  33. Xie, Z. et al. Gene set knowledge discovery with enrichr. Curr. Protoc. 1(3), e90. https://doi.org/10.1002/cpz1.90 (2021).

    Google Scholar 

  34. Srinivasan, R. S. et al. The Prox1–Vegfr3 feedback loop maintains the identity and the number of lymphatic endothelial cell progenitors. Genes Dev. 28(19), 2175. https://doi.org/10.1101/gad.216226.113 (2014).

    Google Scholar 

  35. Zhou, F. et al. Akt/protein kinase B is required for lymphatic network formation, remodeling, and valve development. Am. J. Pathol. 177(4), 2124–2133. https://doi.org/10.2353/ajpath.2010.091301 (2010).

    Google Scholar 

  36. Deng, Y., Zhang, X. & Simons, M. Molecular controls of lymphatic VEGFR3 signaling. Arterioscler. Thromb. Vasc. Biol. 35(2), 421–429. https://doi.org/10.1161/ATVBAHA.114.304881 (2015).

    Google Scholar 

  37. Kuonqui, K. G. et al. Regulation of VEGFR3 signaling in lymphatic endothelial cells. Front. Cell Dev. Biol. 13, 1527971. https://doi.org/10.3389/fcell.2025.1527971 (2025).

    Google Scholar 

  38. Madelaine, R. et al. MicroRNA-9 couples brain neurogenesis and angiogenesis. Cell Rep. 20(7), 1533–1542. https://doi.org/10.1016/j.celrep.2017.07.051 (2017).

    Google Scholar 

  39. Yoshimatsu, Y. et al. TGF-beta and TNF-alpha cooperatively induce mesenchymal transition of lymphatic endothelial cells via activation of activin signals. PLoS ONE 15(5), e0232356. https://doi.org/10.1371/journal.pone.0232356 (2020).

    Google Scholar 

  40. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15(12), 550. https://doi.org/10.1186/s13059-014-0550-8 (2014).

    Google Scholar 

  41. Jha, S. K. et al. Efficient activation of the lymphangiogenic growth factor VEGF-C requires the C-terminal domain of VEGF-C and the N-terminal domain of CCBE1. Sci. Rep. 7(1), 4916. https://doi.org/10.1038/s41598-017-04982-1 (2017).

    Google Scholar 

  42. Rauniyar, K., Jha, S. K. & Jeltsch, M. Biology of vascular endothelial growth factor C in the morphogenesis of lymphatic vessels. Front. Bioeng. Biotechnol. 6, 7. https://doi.org/10.3389/fbioe.2018.00007 (2018).

    Google Scholar 

  43. Auriau, J. et al. Gain of affinity for VEGF165 binding within the VEGFR2/NRP1 cellular complex detected by an HTRF-based binding assay. Biochem. Pharmacol. 158, 45–59. https://doi.org/10.1016/j.bcp.2018.09.014 (2018).

    Google Scholar 

  44. Hou, A., Voorhoeve, P. M., Lan, W., Tin, M. & Tong, L. Comparison of gene expression profiles in primary and immortalized human pterygium fibroblast cells. Exp. Cell Res. 319(18), 2781–2789. https://doi.org/10.1016/j.yexcr.2013.08.022 (2013).

    Google Scholar 

  45. Marinovic, I. et al. Understanding cell model Characteristics—RNA expression profiling in primary and immortalized human mesothelial cells, and in human vein and microvascular endothelial cells. Cells 11(19), 3133. https://doi.org/10.3390/cells11193133 (2022).

    Google Scholar 

  46. Furuya, K. et al. The transcriptome of wild-type and immortalized corneal epithelial cells. Sci. Data. 8(1), 126. https://doi.org/10.1038/s41597-021-00908-9 (2021).

    Google Scholar 

  47. Sheppard, S. E. et al. Lymphatic disorders caused by mosaic, activating KRAS variants respond to MEK inhibition. JCI Insight. 8(9), e155888. https://doi.org/10.1172/jci.insight.155888 (2023).

    Google Scholar 

  48. Lee, S. et al. Generation of pure lymphatic endothelial cells from human pluripotent stem cells and their therapeutic effects on wound repair. Sci. Rep. 5, 11019. https://doi.org/10.1038/srep11019 (2015).

    Google Scholar 

  49. Doss, M. X. & Sachinidis, A. Current challenges of iPSC-based disease modeling and therapeutic implications. Cells 8(5), 403. https://doi.org/10.3390/cells8050403 (2019).

    Google Scholar 

  50. Chen, S. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. Imeta. 2(2), e107. https://doi.org/10.1002/imt2.107 (2023).

    Google Scholar 

  51. Clarke, D. J. B. et al. Appyters: Turning jupyter notebooks into data-driven web apps. Patterns 2(3), 100213. https://doi.org/10.1016/j.patter.2021.100213 (2021).

    Google Scholar 

  52. Wortel, I. M. N. et al. CelltrackR: An R package for fast and flexible analysis of immune cell migration data. Immunoinformatics 1–2, 100003. https://doi.org/10.1016/j.immuno.2021.100003 (2021).

    Google Scholar 

Download references