References
-
Martin-Almedina, S., Mortimer, P. S. & Ostergaard, P. Development and physiological functions of the lymphatic system: Insights from human genetic studies of primary lymphedema. Physiol. Rev. 101(4), 1809–1871. https://doi.org/10.1152/physrev.00006.2020 (2021).
-
Gordon, K. et al. Update and audit of the st george’s classification algorithm of primary lymphatic anomalies: A clinical and molecular approach to diagnosis. J. Med. Genet. 57(10), 653–659. https://doi.org/10.1136/jmedgenet-2019-106084 (2020).
-
Bonetti, G. et al. Low efficacy of genetic tests for the diagnosis of primary lymphedema prompts novel insights into the underlying molecular pathways. Int. J. Mol. Sci. 23(13), 7414. https://doi.org/10.3390/ijms23137414 (2022).
-
Mahmood, K. et al. Variant effect prediction tools assessed using independent, functional assay-based datasets: Implications for discovery and diagnostics. Hum. Genomics. 11(1), 10. https://doi.org/10.1186/s40246-017-0104-8 (2017).
-
MacArthur, D. G. et al. Guidelines for investigating causality of sequence variants in human disease. Nature 508(7497), 469–476. https://doi.org/10.1038/nature13127 (2014).
-
Brnich, S. E. et al. Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework. Genome Med. 12(1), 3. https://doi.org/10.1186/s13073-019-0690-2 (2019).
-
Ades, E. W. et al. HMEC-1: Establishment of an immortalized human microvascular endothelial cell line. J. Invest. Dermatol. 99(6), 683–690. https://doi.org/10.1111/1523-1747.ep12613748 (1992).
-
Rood, P. M., Calafat, J., von dem Borne, A. E., Gerritsen, W. R. & van der Schoot, C. E. Immortalisation of human bone marrow endothelial cells: Characterisation of new cell lines. Eur. J. Clin. Invest. 30(7), 618–629. https://doi.org/10.1046/j.1365-2362.2000.00672.x (2000).
-
Giacalone, J. C. et al. Generation of an immortalized human choroid endothelial cell line (iChEC-1) using an endothelial cell specific promoter. Microvasc. Res. 123, 50–57. https://doi.org/10.1016/j.mvr.2018.12.002 (2019).
-
Kerachian, M. A., Cournoyer, D., Harvey, E. J., Chow, T. & Séguin, C. Isolation and characterization of human bone-derived endothelial cells. Endothelium 14(2), 115–121. https://doi.org/10.1080/10623320701347062 (2007).
-
Kashyap, M. V., Ranjan, A. P., Shankardas, J. & Vishwanatha, J. K. Establishment of human retinal microvascular endothelial cells with extended life-span. In Vivo 27(6), 685–694 (2013).
-
van Leeuwen, E. B. et al. Characterization of immortalized human umbilical and iliac vein endothelial cell lines after transfection with SV40 large T-antigen. Blood Coagul Fibrinolysis. 11(1), 15–25 (2000).
-
Deng, L. et al. Gene expression in immortalized versus primary isolated cardiac endothelial cells. Sci. Rep. 10(1), 2241. https://doi.org/10.1038/s41598-020-59213-x (2020).
-
Schoppmann, S. F. et al. Telomerase-immortalized lymphatic and blood vessel endothelial cells are functionally stable and retain their lineage specificity. Microcirculation 11(3), 261–269. https://doi.org/10.1080/10739680490425967 (2004).
-
Nisato, R. E. et al. Generation and characterization of telomerase-transfected human lymphatic endothelial cells with an extended life span. Am. J. Pathol. 165(1), 11–24. https://doi.org/10.1016/S0002-9440(10)63271-3 (2004).
-
Frenkel, N. et al. Long-lived human lymphatic endothelial cells to study lymphatic biology and lymphatic vessel/tumor coculture in a 3D microfluidic model. ACS Biomater. Sci. Eng. 7(7), 3030–3042. https://doi.org/10.1021/acsbiomaterials.0c01378 (2021).
-
Bentley, K. et al. The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis. Nat. Cell. Biol. 16(4), 309–321. https://doi.org/10.1038/ncb2926 (2014).
-
Martin-Almedina, S. et al. EPHB4 kinase-inactivating mutations cause autosomal dominant lymphatic-related hydrops fetalis. J. Clin. Invest. 126(8), 3080–3088. https://doi.org/10.1172/JCI85794 (2016).
-
Mangion, J. et al. A gene for lymphedema-distichiasis maps to 16q24.3. Am. J. Hum. Genet. 65(2), 427–432. https://doi.org/10.1086/302500 (1999).
-
Greene, D. et al. Genetic association analysis of 77,539 genomes reveals rare disease etiologies. Nat. Med. 29(3), 679–688. https://doi.org/10.1038/s41591-023-02211-z (2023).
-
Vergel, M., Marin, J. J., Estevez, P. & Carnero, A. Cellular senescence as a target in cancer control. J. Aging Res. 2011, 725365. https://doi.org/10.4061/2011/725365 (2010).
-
Salama, R., Sadaie, M., Hoare, M. & Narita, M. Cellular senescence and its effector programs. Genes Dev. 28(2), 99–114. https://doi.org/10.1101/gad.235184.113 (2014).
-
Bloom, S. I., Islam, M. T., Lesniewski, L. A. & Donato, A. J. Mechanisms and consequences of endothelial cell senescence. Nat. Rev. Cardiol. 20(1), 38–51. https://doi.org/10.1038/s41569-022-00739-0 (2023).
-
Maciel-Barón, L. A. et al. Senescence associated secretory phenotype profile from primary lung mice fibroblasts depends on the senescence induction stimuli. Age 38(1), 26. https://doi.org/10.1007/s11357-016-9886-1 (2016).
-
Stein, G. H., Drullinger, L. F., Soulard, A. & Dulić, V. Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol. Cell Biol. 19(3), 2109–2117. https://doi.org/10.1128/MCB.19.3.2109 (1999).
-
Pontes-Quero, S. et al. High mitogenic stimulation arrests angiogenesis. Nat. Commun. 10, 2016. https://doi.org/10.1038/s41467-019-09875-7 (2019).
-
Tátrai, P. et al. Combined introduction of bmi-1 and hTERT immortalizes human adipose tissue-derived stromal cells with low risk of transformation. Biochem. Biophys. Res. Commun. 422(1), 28–35. https://doi.org/10.1016/j.bbrc.2012.04.088 (2012).
-
Chekmarev, J., Azad, M. G. & Richardson, D. R. The oncogenic signaling disruptor, NDRG1: Molecular and cellular mechanisms of activity. Cells 10(9), 2382. https://doi.org/10.3390/cells10092382 (2021).
-
Dufour, F. et al. TYRO3 as a molecular target for growth inhibition and apoptosis induction in bladder cancer. Br. J. Cancer. 120(5), 555–564. https://doi.org/10.1038/s41416-019-0397-6 (2019).
-
Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28(11), 1947–1951. https://doi.org/10.1002/pro.3715 (2019).
-
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28(1), 27–30. https://doi.org/10.1093/nar/28.1.27 (2000).
-
Kanehisa, M., Furumichi, M., Sato, Y., Matsuura, Y. & Ishiguro-Watanabe, M. KEGG: Biological systems database as a model of the real world. Nucleic Acids Res. 53(D1), D672. https://doi.org/10.1093/nar/gkae909 (2025).
-
Xie, Z. et al. Gene set knowledge discovery with enrichr. Curr. Protoc. 1(3), e90. https://doi.org/10.1002/cpz1.90 (2021).
-
Srinivasan, R. S. et al. The Prox1–Vegfr3 feedback loop maintains the identity and the number of lymphatic endothelial cell progenitors. Genes Dev. 28(19), 2175. https://doi.org/10.1101/gad.216226.113 (2014).
-
Zhou, F. et al. Akt/protein kinase B is required for lymphatic network formation, remodeling, and valve development. Am. J. Pathol. 177(4), 2124–2133. https://doi.org/10.2353/ajpath.2010.091301 (2010).
-
Deng, Y., Zhang, X. & Simons, M. Molecular controls of lymphatic VEGFR3 signaling. Arterioscler. Thromb. Vasc. Biol. 35(2), 421–429. https://doi.org/10.1161/ATVBAHA.114.304881 (2015).
-
Kuonqui, K. G. et al. Regulation of VEGFR3 signaling in lymphatic endothelial cells. Front. Cell Dev. Biol. 13, 1527971. https://doi.org/10.3389/fcell.2025.1527971 (2025).
-
Madelaine, R. et al. MicroRNA-9 couples brain neurogenesis and angiogenesis. Cell Rep. 20(7), 1533–1542. https://doi.org/10.1016/j.celrep.2017.07.051 (2017).
-
Yoshimatsu, Y. et al. TGF-beta and TNF-alpha cooperatively induce mesenchymal transition of lymphatic endothelial cells via activation of activin signals. PLoS ONE 15(5), e0232356. https://doi.org/10.1371/journal.pone.0232356 (2020).
-
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15(12), 550. https://doi.org/10.1186/s13059-014-0550-8 (2014).
-
Jha, S. K. et al. Efficient activation of the lymphangiogenic growth factor VEGF-C requires the C-terminal domain of VEGF-C and the N-terminal domain of CCBE1. Sci. Rep. 7(1), 4916. https://doi.org/10.1038/s41598-017-04982-1 (2017).
-
Rauniyar, K., Jha, S. K. & Jeltsch, M. Biology of vascular endothelial growth factor C in the morphogenesis of lymphatic vessels. Front. Bioeng. Biotechnol. 6, 7. https://doi.org/10.3389/fbioe.2018.00007 (2018).
-
Auriau, J. et al. Gain of affinity for VEGF165 binding within the VEGFR2/NRP1 cellular complex detected by an HTRF-based binding assay. Biochem. Pharmacol. 158, 45–59. https://doi.org/10.1016/j.bcp.2018.09.014 (2018).
-
Hou, A., Voorhoeve, P. M., Lan, W., Tin, M. & Tong, L. Comparison of gene expression profiles in primary and immortalized human pterygium fibroblast cells. Exp. Cell Res. 319(18), 2781–2789. https://doi.org/10.1016/j.yexcr.2013.08.022 (2013).
-
Marinovic, I. et al. Understanding cell model Characteristics—RNA expression profiling in primary and immortalized human mesothelial cells, and in human vein and microvascular endothelial cells. Cells 11(19), 3133. https://doi.org/10.3390/cells11193133 (2022).
-
Furuya, K. et al. The transcriptome of wild-type and immortalized corneal epithelial cells. Sci. Data. 8(1), 126. https://doi.org/10.1038/s41597-021-00908-9 (2021).
-
Sheppard, S. E. et al. Lymphatic disorders caused by mosaic, activating KRAS variants respond to MEK inhibition. JCI Insight. 8(9), e155888. https://doi.org/10.1172/jci.insight.155888 (2023).
-
Lee, S. et al. Generation of pure lymphatic endothelial cells from human pluripotent stem cells and their therapeutic effects on wound repair. Sci. Rep. 5, 11019. https://doi.org/10.1038/srep11019 (2015).
-
Doss, M. X. & Sachinidis, A. Current challenges of iPSC-based disease modeling and therapeutic implications. Cells 8(5), 403. https://doi.org/10.3390/cells8050403 (2019).
-
Chen, S. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. Imeta. 2(2), e107. https://doi.org/10.1002/imt2.107 (2023).
-
Clarke, D. J. B. et al. Appyters: Turning jupyter notebooks into data-driven web apps. Patterns 2(3), 100213. https://doi.org/10.1016/j.patter.2021.100213 (2021).
-
Wortel, I. M. N. et al. CelltrackR: An R package for fast and flexible analysis of immune cell migration data. Immunoinformatics 1–2, 100003. https://doi.org/10.1016/j.immuno.2021.100003 (2021).
