GC-MS metabolite profiling and multi-target Docking analysis of Calotropis procera and Euphorbia tirucalli stem extracts for cytotoxicity and antioxidant activity

gc-ms-metabolite-profiling-and-multi-target-docking-analysis-of-calotropis-procera-and-euphorbia-tirucalli-stem-extracts-for-cytotoxicity-and-antioxidant-activity
GC-MS metabolite profiling and multi-target Docking analysis of Calotropis procera and Euphorbia tirucalli stem extracts for cytotoxicity and antioxidant activity
  • Sibuh, B. et al. Molecular docking, synthesis and anticancer activity of thiosemicarbazone derivatives against MCF-7 human breast cancer cell line. Life Sci. 273, 119305. https://doi.org/10.1016/j.lfs.2021.119305 (2021).

    Google Scholar 

  • Hyuna, S. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca Cancer J. Clin., 4 (2021).

  • Clegg-Lamptey, J. N. Epidemiology of Breast Cancer in Africa (School of Medicine and Dentistry, University of Ghana, 2017).

  • Ayele, W. et al. Breast cancer morbidity and mortality in rural ethiopia: data from 788 verbal autopsies. BMC Women’s Health. 22 (89). https://doi.org/10.1186/s12905-022-01672-7 (2022).

  • Al-Rowaily, S. L. et al. Essential oil of Calotropis procera: comparative chemical profiles, antimicrobial activity, and allelopathic potential on weeds. Molecules 25, 5203. https://doi.org/10.3390/molecules25215203 (2020).

    Google Scholar 

  • Ramadan, A. et al. Metabolomic response of Calotropis procera growing in the desert to changes in water availability. PLoS One, 9, e87895 (2014). https://doi.org/10.1371/journal. pone. 0087895.

  • Kaur, A. et al. An overview of the characteristics and potential of Calotropis procera from botanical, ecological, and economic perspectives. Front. Plant. Sci. 12, 690806. https://doi.org/10.3389/fpls.2021.690806 (2021).

    Google Scholar 

  • Mossa, J. S. et al. Pharmacological studies on aerial parts of Calotropis procera. Am. J. Chin. Med. 19, 223–231. https://doi.org/10.1142/S0192415X91000302 (1991).

    Google Scholar 

  • Kinda, P. T. et al. The metabolomic study of Calotropis procera Ait. From Burkina Faso, based on chemical functional groups profiling using FTIR. J. Integr. Complement. Med. 17, 20190134. https://doi.org/10.1515/jcim-2019-0134 (2020).

    Google Scholar 

  • Esubalew, S. T. et al. Review of ethnobotanical and ethnopharmacological evidences of some Ethiopian medicinal plants traditionally used for the treatment of cancer. Ethiop. J. Health Dev. 31, 161–187 (2017).

    Google Scholar 

  • Malhab, L. J. B. et al. Potential anticancer properties of Calotropis procera: an investigation on breast and colon cancer cells. Heliyon 9 https://doi.org/10.1016/j.heliyon.2023.e16706 (2023).

  • Mali, P. Y. & Panchal, S. S. Euphorbia Tirucalli L. Review on morphology, medicinal uses, phytochemistry and Pharmacological activities. Asian Pac. J. Trop. Biomed. 7, 603–613. https://doi.org/10.1016/j.apjtb.2017.06.002 (2017).

    Google Scholar 

  • Kgosiemang, I. et al. Pharmacological Significance, medicinal Use, and toxicity of extracted and isolated compounds from euphorbia species found in Southern africa: A review. Plants 14, 469. https://doi.org/10.3390/plants14030469 (2025).

    Google Scholar 

  • Hema, R. et al. Gas chromatography-Mass spectroscopic analysis of Lawsonia inermis leaves. Life Sci. J. 7, 48–50 (2010).

    Google Scholar 

  • Ali, A. et al. Total phenolic and flavonoid contents and antioxidant activity of ginger (Zingiber officinale Rosc.) rhizome, callus and callus treated with some elicitors. J. Genet. Eng. Biotechnol. 16, 677–682. https://doi.org/10.1016/j.jgeb.2018.03.003 (2018).

    Google Scholar 

  • Hussen, E. M. & Endalew, S. A. In vitro antioxidant and free-radical scavenging activities of Polar leaf extracts of Vernonia amygdalina. BMC Complement. Med. Ther. 23, 146. https://doi.org/10.1186/s12906-023-03923-y (2023).

    Google Scholar 

  • Belghalia, E. et al. Virtual screening and dynamic simulation of Baloxavir derivatives for multitarget breast cancer treatment. Anti-Cancer Agents Med. Chem. 25, 1218–1238. https://doi.org/10.2174/0118715206361014250307084057 (2025).

    Google Scholar 

  • Debnath, A. et al. Identification of novel cyclin-dependent kinase 4/6 inhibitors from marine natural products. Plos one. 20 e0313830 (2025). (2025). https://doi.org/10.1371/journal.pone.0313830

  • Heeke, A. et al. Human epidermal growth factor receptor 2 alterations and prognostic implications in all subtypes of breast cancers. JCO Precis Oncol. 9 https://doi.org/10.12 00/PO.23.00719 (2025). e2300719.

  • Shosha, M. et al. New thiazole derivative as a potential anticancer and topoisomerase II inhibitor. Sci. Rep. 15, 710. https://doi.org/10.1038/s41598-024-81294-1 (2025).

    Google Scholar 

  • Galma, W. et al. Antibacterial and antioxidant activities of extracts and isolated compounds from the roots extract of Cucumis prophetarum and in Silico study on DNA gyrase and human Peroxiredoxin 5. BMC Chem. 15, 32. https://doi.org/10.1186/s13065-021-00758-x (2021).

    Google Scholar 

  • Hawkins, C. L. & Davies, M. J. Role of myeloperoxidase and oxidant formation in the extracellular environment in inflammation-induced tissue damage. Free Radic Biol. Med. 172, 633–651. https://doi.org/10.1016/j.freeradbiomed.2021.07.007 (2021).

    Google Scholar 

  • Selvaraj, J. Fatty acids and their analogues as anticancer agents. Fat. Acids. 21, 72–86. https://doi.org/10.5772/intechopen.68171 (2017).

    Google Scholar 

  • Shah, Q. et al. In vitro biological and GC-MS analysis of whole plant Calotropis procera. J. Chem. 2024(1), 2012983. https://doi.org/10.1155/2024/2012983 (2024).

    Google Scholar 

  • Tsai, F. S. et al. Drug Discovery from Mother Nature. Adv Exp Med Biol. 929, Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41342-6_7

  • Sharma, N. et al. A review on Pharmacological activities of Lupeol and its triterpene derivatives. J. Drug Deliv Ther. 10 https://doi.org/10.22270/jddt.v10i5.4280 (2020).

  • Liu, K. et al. Lupeol and its derivatives as anticancer and anti-inflammatory agents: Molecular mechanisms and therapeutic efficacy. Pharmacol. Res. 164 105373 (2021). (2021). https://doi.org/10.1016/j.phrs.2020.105373

  • Nogueira, A. et al. Pharmacological effects of the isomeric mixture of alpha and beta Amyrin from protium heptaphyllum: a literature review. Fundam Clin. Pharmacol. 33, 4–12. https://doi.org/10.1111/fcp.12402 (2019).

    Google Scholar 

  • Neto, S. et al. α-amyrin-loaded nanocapsules produce selective cytotoxic activity in leukemic cells. Biomed. Pharmacother. 139, 111656. https://doi.org/10.1016/j.biopha (2021). 2021.111 656.

    Google Scholar 

  • Alhazmi, H. et al. GC-MS analysis and antimicrobial activity of ethanolic extract of Calotropis procera (Ait.) R. Br. leaves. J. Chem. Pharm. Res. 10, 45–49 (2018).

    Google Scholar 

  • Adam, I. A. & Hagr, T. E. GC-MS analysis of chemical constituents from chloroform extracts of Calotropis procera (Ait.) R. Br (Asclepiadaceae) roots collected in Sudan. Open. Sci. J. Anal. Chem. 4, 20–24 (2019).

    Google Scholar 

  • Kyada, A. et al. Phytochemical analysis, in vitro free radical scavenging, and Ldl protective effects of different solvent fractions of Calotropis procera (R.) br. root bark extract. J. Food Biochem. 1, 6689595. https://doi.org/10.1155/2023/6689595 (2023).

    Google Scholar 

  • Saddiq, A. et al. Antimicrobial, antigenotoxicity, and characterization of Calotropis procera and its rhizosphere-inhabiting actinobacteria: in vitro and in vivo studies. Molecules 27, 3123. https://doi.org/10.3390/molecules27103123 (2022).

    Google Scholar 

  • Naser, E. et al. Antibacterial activity and phytochemical investigation of leaves of Calotropis procera plant in Iraq by GC-MS. IJPSR 10, 1988–1994 (2019).

    Google Scholar 

  • Abd-ElGawad, A. et al. Interspecific variations in the habitats of Reichardia Tingitana (L.) Roth leading to changes in its bioactive constituents and allelopathic activity. Saudi J. Biol. Sci. 27, 489–499. https://doi.org/10.1016/j.sjbs.2019.11.015 (2020).

    Google Scholar 

  • Amin, S. M. et al. Comparative chemical study and antimicrobial activity of essential oils of three Artemisia species from Egypt and Saudi Arabia. Flavour. Fragr. J. 34, 450–459. https://doi.org/10.1002/ffj.3525 (2019).

    Google Scholar 

  • Baptista-Silva, S. et al. The progress of essential oils as potential therapeutic agents: A review. J. Essent. Oil Res. 32, 279–295. https://doi.org/10.1080/10412905.2020.1746698 (2020).

    Google Scholar 

  • Akhgar, M. R., Rajaei, P. & Aieen, S. Constituents of the essential oil of euphorbia hebecarpa. Chem. Nat. Compd. 50, 929–930. https://doi.org/10.1007/s10600-014-1121-7 (2014).

    Google Scholar 

  • Yusoff, E., Ahmad, A., Mohamad, S. & Muhammad, N. F. GC-MS analysis of some volatile constituents extracted from stem of Euphorbia Tirucalli Linn. Arch. Orofac. Sci. 12, 36–44 (2017).

    Google Scholar 

  • Azaat, A., Babojian, G. & Issa, N. Phytochemical screening, antioxidant and anticancer activities of euphorbia hyssopifolia L. against MDA-MB-231 breast cancer cell line. J. Turk. Chem. Soc. A: Chem. 9, 295–310. https://doi.org/10.18596/jotcsa.1021449 (2022).

    Google Scholar 

  • Al-Ansi, Z. et al. Antibacterial and antioxidant activities of triterpenoids isolated from endemic euphorbia arbuscula stem latex. Adv. Pharmacol. Pharm. Sci. 2024 (8273789). https://doi.org/10.1155/2024/8273789 (2024).

  • Okpako, I. O., Kyama, M. C. & Njeru, S. N. Phytochemical screening and gas chromatography-mass spectrometry analysis of euphorbia ingens organic root extract. J. Med. Plants Res. 17, 100–105. https://doi.org/10.5897/JMPR2022.7287 (2023).

    Google Scholar 

  • Abdel-Aty, A. et al. Ficus carica, Ficus Sycomorus and Euphorbia Tirucalli latex extracts: phytochemical screening, antioxidant and cytotoxic properties. Biocatal. Agric. Biotechnol. 20, 101199. https://doi.org/10.1016/j.bcab.2019.101199 (2019).

    Google Scholar 

  • Ma, L., Chen, H., Dong, P. & Lu, X. Anti-inflammatory and anticancer activities of extracts and compounds from the mushroom Inonotus obliquus. Food Chem. 139, 503–508. https://doi.org/10.1016/j.foodchem.2013.01.030 (2013).

    Google Scholar 

  • Al-Ramamneh, E. et al. Efficacy of Sterculia diversifolia leaf extracts: volatile compounds, antioxidant and anti-Inflammatory activity, and green synthesis of potential antibacterial silver nanoparticles. Plants 11, 2492. https://doi.org/10.3390/plants11192 (2022).

    Google Scholar 

  • Man, C. et al. Antibacterial and antibiofilm activities of Swietenia macrophylla King ethanolic extract against foodborne pathogens. Malays Appl. Biol. 51, 45–56. https://doi.org/10.55230/mabjournal.v51i4.10 (2022).

    Google Scholar 

  • Xu, F., Huang, X., Wu, H. & Wang, X. Beneficial health effects of Lupenone triterpene: A review. Biomed. Pharmacother. 103, 198–203. https://doi.org/10.1016/j.biopha.2018 (2018). 04.019.

    Google Scholar 

  • Xu, F. et al. Lupenone is a good anti-inflammatory compound based on the network Pharmacology. Mol. Divers. 24, 21–30. https://doi.org/10.1007/s11030-019-09928-5 (2020).

    Google Scholar 

  • Khajuria, V. et al. Anti-inflammatory potential of Hentriacontane in LPS stimulated RAW 264.7 cells and mice model. Biomed. Pharmacother. 92, 175–186. https://doi.org/10.1016/j.biopha.2017.05.063 (2017).

    Google Scholar 

  • Osorio, A. et al. Olean-18-ene triterpenoids from celastraceae species inhibit HIV replication targeting NF-kB and Sp1 dependent transcription. Eur. J. Med. Chem. 52, 295–303. https://doi.org/10.1016/j.ejmech.2012.03.035 (2012).

    Google Scholar 

  • Gutiérrez-Nicolás, F. et al. Synthesis and anti-HIV activity of Lupane and olean-18-ene derivatives. Absolute configuration of 19, 20-epoxylupanes by VCD. J. Nat. Prod. 75, 669–676. https://doi.org/10.1021/np200910u (2012).

    Google Scholar 

  • Vasas, A. & Hohmann, J. Euphorbia diterpenes: isolation, structure, biological activity, and synthesis (2008–2012). Chem. Rev. 114, 8579–8612. https://doi.org/10.1021/cr400541j (2014).

    Google Scholar 

  • Choene, M. & Motadi, L. Validation of the antiproliferative effects of euphorbia Tirucalli extracts in breast cancer cell lines. Mol. Biol. 50, 98–110. https://doi.org/10.1134/S0026893316010040 (2016).

    Google Scholar 

  • Al-Qahtani, M. et al. Anticancer effects of Calotropis procera latex extract in mcf-7 breast cancer cells. Pharmacogn Mag. 16 https://doi.org/10.4103/pm.pm_156_20 (2020).

  • Kyada, A. et al. Phytochemical analysis, in vitro free radical scavenging, and Ldl protective effects of different solvent fractions of Calotropis procera (R.) br. root bark extract. J. Food Biochem. 2023 (6689595). https://doi.org/10.1155/2023/6689595 (2023).

  • Tsala, D. et al. Evaluation of the antioxidant activity and the healing action of the ethanol extract of Calotropis procera bark against surgical wounds. J. Intercult Ethnopharmacol. 4, 64. https://doi.org/10.5455/ji ce.20141211071136 (2015).

    Google Scholar 

  • Ahmad Nejhad, A. et al. Identification of phytochemical, antioxidant, anticancer and antimicrobial potential of Calotropis procera leaf aqueous extract. Sci. Rep. 13, 14716. https://doi.org/10.1038/s41598-023-42086-1 (2023).

    Google Scholar 

  • De Araújo, K. et al. Identification of phenolic compounds and evaluation of antioxidant and antimicrobial properties of euphorbia Tirucalli L. Antioxidants 3, 159–175. https://doi.org/10.3390/antiox3010159 (2014).

    Google Scholar 

  • Viet, T. D., Xuan, T. D. & Anh, L. H. α-Amyrin and β-amyrin isolated from Celastrus hindsii leaves and their antioxidant, anti-xanthine oxidase, and anti-tyrosinase potentials. Molecules 26, 7248. https://doi.org/10.3390/molecules26237248 (2021).

    Google Scholar 

  • Hua, H. et al. Protective effects of lanosterol synthase up-regulation in UV-B-induced oxidative stress. Front. Pharmacol. 10, 947. https://doi.org/10.3389/fphar.2019.00947 (2019).

    Google Scholar 

  • Yang, B. et al. ω-6 polyunsaturated fatty acids (linoleic acid) activate both autophagy and antioxidation in a synergistic feedback loop via TOR-dependent and TOR-independent signaling pathways. Cell. Death Dis. 11, 607. https://doi.org/10.1038/s41419-020-02750-0 (2020).

    Google Scholar 

  • Ilyasov, I. et al. ABTS/PP decolorization assay of antioxidant capacity reaction pathways. Int. J. Mol. Sci. 21, 1131. https://doi.org/10.3390/ijms21031131 (2020).

    Google Scholar 

  • Issahaku, A. et al. Characterization of the binding of MRTX1133 as an avenue for the discovery of potential KRASG12D inhibitors for cancer therapy. Sci. Rep. 12, 17796. https://doi.org/10.1038/s41598-022-22668-1 (2022).

    Google Scholar 

  • ALSAEDI, H. K., Alwan, N. A. & Al-Masoudi, E. A. Physiological and biochemical effect of α-Amyrin: A review. J. Med. Life Sci. 6, 443–452. https://doi.org/10.21608/jmals.2024.383360 (2024).

    Google Scholar 

  • Parvez, A. et al. Broad-spectrum therapeutic potentials of the multifaceted triterpene Lupeol and its derivatives. Chem. Biodivers. 22 https://doi.org/10.1002/cbdv.202402286 (2025). e202402286.