Genome-wide analysis of conserved and novel miRNAs in mango mesocarp reveals early regulatory networks involved in postharvest heat stress response

genome-wide-analysis-of-conserved-and-novel-mirnas-in-mango-mesocarp-reveals-early-regulatory-networks-involved-in-postharvest-heat-stress-response
Genome-wide analysis of conserved and novel miRNAs in mango mesocarp reveals early regulatory networks involved in postharvest heat stress response

References

  1. Axtell, M. J. Classification and comparison of small RNAs from plants. Annu. Rev. Plant. Biol. 64, 137–159 (2013).

    Google Scholar 

  2. Matzke, M. A., Kanno, T., Matzke, A. J. M. & RNA-Directed, D. N. A. Methylation: the evolution of a complex epigenetic pathway in flowering plants. Annu. Rev. Plant. Biol. 66, 243–267 (2015).

    Google Scholar 

  3. Borges, F. & Martienssen, R. A. The expanding world of small RNAs in plants. Nat. Rev. Mol. Cell. Biol. 16, 727–741 (2015).

    Google Scholar 

  4. Yu, Y., Jia, T. & Chen, X. The ‘how’ and ‘where’ of plant MicroRNAs. New Phytol. 216, 1002–1017 (2017).

    Google Scholar 

  5. Rao, S. et al. A conserved HSF:miR169:NF-YA loop involved in tomato and Arabidopsis heat stress tolerance. Plant J. 112, 7–26 (2022).

    Google Scholar 

  6. Zhang, L. et al. Characterization and identification of grapevine heat stress-responsive MicroRNAs revealed the positive regulated function of vvi-miR167 in thermostability. Plant Sci. 329, 111623 (2023).

    Google Scholar 

  7. Li, B. et al. Sly-miR398 participates in heat stress tolerance in tomato by modulating ROS accumulation and HSP response. Agronomy 15, 294 (2025).

    Google Scholar 

  8. Zhou, R. et al. Unique MiRNAs and their targets in tomato leaf responding to combined drought and heat stress. BMC Plant. Biol. 20, 107 (2020).

    Google Scholar 

  9. Bansal, C., Balyan, S. & Mathur, S. Inferring the regulatory network of the miRNA-mediated response to individual and combined heat and drought stress in tomato. J. Plant. Biochem. Biotechnol. 30, 862–877 (2021).

    Google Scholar 

  10. Ravichandran, S., Ragupathy, R., Edwards, T., Domaratzki, M. & Cloutier, S. MicroRNA-guided regulation of heat stress response in wheat. BMC Genom. 20, 488 (2019).

    Google Scholar 

  11. USDA-APHIS. Treatment manual. 1–128. at (2016). https://www.aphis.usda.gov/sites/default/files/treatment.pdf.

  12. Dautt-Castro, M. et al. Mesocarp RNA-Seq analysis of Mango (Mangifera indica L.) identify quarantine postharvest treatment effects on gene expression. Sci. Hortic. 227, 146–153 (2018).

    Google Scholar 

  13. López-Virgen, A. G. et al. Genome-wide identification of gene families related to MiRNA biogenesis in mangifera indica L. and their possible role during heat stress. PeerJ 12, e17737 (2024).

    Google Scholar 

  14. Dai, X., Zhuang, Z. & Zhao, P. X. PsRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Res. 46, W49–W54 (2018).

    Google Scholar 

  15. Rajagopalan, R., Vaucheret, H., Trejo, J. & Bartel, D. P. A diverse and evolutionarily fluid set of MicroRNAs in Arabidopsis Thaliana. Genes Dev. 20, 3407–3425 (2006).

    Google Scholar 

  16. Wang, Y., Li, H., Sun, Q. & Yao, Y. Characterization of small RNAs derived from tRNAs, rRNAs and snornas and their response to heat stress in wheat seedlings. PLoS One. 11, e0150933 (2016).

    Google Scholar 

  17. Tang, G. Plant micrornas: an insight into their gene structures and evolution. Semin Cell. Dev. Biol. 21, 782–789 (2010).

    Google Scholar 

  18. Zhou, M. et al. Genome-wide analysis of clustering patterns and flanking characteristics for plant MicroRNA genes. FEBS J. 278, 929–940 (2011).

    Google Scholar 

  19. Li, Y., Pi, M., Gao, Q., Liu, Z. & Kang, C. Updated annotation of the wild strawberry Fragaria Vesca V4 genome. Hortic. Res. 6, 61 (2019).

    Google Scholar 

  20. Bai, S. et al. Genome-wide identification of MicroRNAs involved in the regulation of fruit ripening and climacteric stages in melon (Cucumis melo). Hortic. Res. 7, 106 (2020).

    Google Scholar 

  21. Mazurier, M. et al. Integrated sRNA-seq and RNA-seq analyses reveal a MicroRNA regulation network involved in cold response in Pisum sativum L. Genes (Basel). 13, 1119 (2022).

    Google Scholar 

  22. Cui, J., You, C. & Chen, X. The evolution of MicroRNAs in plants. Curr. Opin. Plant. Biol. 35, 61–67 (2017).

    Google Scholar 

  23. Hajieghrari, B. & Farrokhi, N. Investigation on the conserved MicroRNA genes in higher plants. Plant. Mol. Biol. Rep. 39, 10–23 (2021).

    Google Scholar 

  24. Mango Genome Consortium. The ‘Tommy atkins’ Mango genome reveals candidate genes for fruit quality. BMC Plant. Biol. 21, 1–18 (2021).

    Google Scholar 

  25. Wang, P. et al. The genome evolution and domestication of tropical fruit Mango. Genome Biol. 21, 60 (2020).

    Google Scholar 

  26. Qin, L., Xu, P. & Jiao, Y. Evolution of plant conserved MicroRNAs after Whole-Genome duplications. Genome Biol. Evol. 17, evaf045 (2025).

    Google Scholar 

  27. Zhang, W. et al. Multiple distinct small RNAs originate from the same MicroRNA precursors. Genome Biol. 11, R81 (2010).

    Google Scholar 

  28. Bologna, N. G. & Voinnet, O. The Diversity, Biogenesis, and activities of endogenous Silencing small RNAs in Arabidopsis. Annu. Rev. Plant. Biol. 65, 473–503 (2014).

    Google Scholar 

  29. Zhu, X. et al. High-Throughput Sequencing-Based identification of Arabidopsis MiRNAs induced by phytophthora capsici infection. Front. Microbiol. 11, 1094 (2020).

    Google Scholar 

  30. Zhou, R. et al. Identification of MiRNAs and their targets in wild tomato at moderately and acutely elevated temperatures by high-throughput sequencing and degradome analysis. Sci. Rep. 6, 33777 (2016).

    Google Scholar 

  31. Xu, R., Liu, C., Li, N. & Zhang, S. Global identification and expression analysis of stress-responsive genes of the argonaute family in Apple. Mol. Genet. Genomics. 291, 2015–2030 (2016).

    Google Scholar 

  32. Vaucheret, H., Mallory, A. C. & Bartel, D. P. AGO1 homeostasis entails coexpression of MIR168 and AGO1 and Preferential stabilization of miR168 by AGO1. Mol. Cell. 22, 129–136 (2006).

    Google Scholar 

  33. Mejía-Mendoza, M. A., Garcidueñas-Piña, C., Barrera-Figueroa, B. E. & Morales-Domínguez, J. F. Identification and profiling analysis of MicroRNAs in guava fruit (Psidium Guajava L.) and their role during ripening. Genes (Basel). 14, 2029 (2023).

    Google Scholar 

  34. Francischini, C. W. & Quaggio, R. B. Molecular characterization of Arabidopsis Thaliana PUF proteins – binding specificity and target candidates. FEBS J. 276, 5456–5470 (2009).

    Google Scholar 

  35. Cheng, P. et al. Genome-wide identification and analysis of TCP transcription factor genes in Rosa chinensis in response to abiotic stress and fungal diseases. Ornam. Plant. Res. 3, 1–11 (2023).

    Google Scholar 

  36. Shi, X. P. et al. MicroRNA319 family members play an important role in solanum habrochaites and S. lycopersicum responses to chilling and heat stresses. Biol. Plant. 63, 200–209 (2019).

    Google Scholar 

  37. Jia, P. et al. Cotton miR319b-Targeted TCP4-Like enhances plant defense against verticillium dahliae by activating GhICS1 transcription expression. Front. Plant. Sci. 13, 870882 (2022).

    Google Scholar 

  38. Lan, J. et al. Arabidopsis TCP4 transcription factor inhibits high temperature-induced homeotic conversion of ovules. Nat. Commun. 14, 5673 (2023).

    Google Scholar 

  39. Yin, H. et al. miR156/SPL9 regulates reactive oxygen species accumulation and immune response in Arabidopsis Thaliana. Phytopathology 109, 632–642 (2019).

    Google Scholar 

  40. Fortunato, S., Lasorella, C., Dipierro, N., Vita, F. & de Pinto, M. C. Redox signaling in plant heat stress response. Antioxidants 12, 605 (2023).

    Google Scholar 

  41. Jiao, P. et al. ZmTCP14, a TCP transcription factor, modulates drought stress response in Zea Mays L. Environ. Exp. Bot. 208, 105232 (2023).

    Google Scholar 

  42. Jones-Rhoades, M. W., Bartel, D. P. & Bartel, B. MicroRNAs and their regulatory roles in plants. Annu. Rev. Plant. Biol. 57, 19–53 (2006).

    Google Scholar 

  43. Wang, Y. et al. TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response. PLoS One. 7, e48445 (2012).

    Google Scholar 

  44. Jiang, N. et al. Tomato lncRNA23468 functions as a competing endogenous RNA to modulate NBS-LRR genes by decoying miR482b in the tomato-Phytophthora infestans interaction. Hortic. Res. 6, 28 (2019).

    Google Scholar 

  45. Ma, W. et al. Coupling of micro RNA-directed phased small interfering RNA generation from long noncoding genes with alternative splicing and alternative polyadenylation in small RNA‐mediated gene Silencing. New Phytol. 217, 1535–1550 (2018).

    Google Scholar 

  46. Várallyay, É., Válóczi, A., Ágyi, Á., Burgyán, J. & Havelda, Z. Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation. EMBO J. 29, 3507–3519 (2010).

    Google Scholar 

  47. Shivaprasad, P. V. et al. A MicroRNA superfamily regulates nucleotide binding Site–Leucine-Rich repeats and other mRNAs. Plant. Cell. 24, 859–874 (2012).

    Google Scholar 

  48. López-Gómez, R. & Gómez-Lim, M. A. A method for extracting intact RNA from fruits rich in polysaccharides using ripe Mango mesocarp. HortScience 27, 440–442 (1992).

    Google Scholar 

  49. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Google Scholar 

  50. Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).

    Google Scholar 

  51. Axtell, M. J. & ShortStack Comprehensive annotation and quantification of small RNA genes. RNA 19, 740–751 (2013).

    Google Scholar 

  52. Kozomara, A., Birgaoanu, M. & Griffiths-Jones, S. MiRBase: from MicroRNA sequences to function. Nucleic Acids Res. 47, D155–D162 (2019).

    Google Scholar 

  53. Wong, T. et al. IQ-TREE 3: Phylogenomic Inference Software using Complex Evolutionary Models. Preprint at (2025). https://doi.org/10.32942/X2P62N

  54. Letunic, I. & Bork, P. Interactive tree of life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 52, W78–W82 (2024).

    Google Scholar 

  55. Schwab, R. et al. Specific effects of MicroRNAs on the plant transcriptome. Dev. Cell. 8, 517–527 (2005).

    Google Scholar 

  56. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Google Scholar 

  57. Gotz, S. et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 36, 3420–3435 (2008).

    Google Scholar 

  58. Gruber, A. R., Lorenz, R., Bernhart, S. H., Neubock, R. & Hofacker, I. L. The Vienna RNA websuite. Nucleic Acids Res. 36, W70–W74 (2008).

    Google Scholar 

  59. Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).

    Google Scholar 

  60. Chen, C. et al. Real-time quantification of MicroRNAs by stem–loop RT–PCR. Nucleic Acids Res. 33, e179–e179 (2005).

    Google Scholar 

  61. Kramer, M. F. Stem-Loop RT‐qPCR for MiRNAs. Curr. Protoc. Mol. Biol. 95, 1–15 (2011).

    Google Scholar 

  62. Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101–1108 (2008).

    Google Scholar 

  63. Li, X. Infiltration of Nicotiana benthamiana protocol for transient expression via Agrobacterium. Bio-protocol 1, e95 (2011).

    Google Scholar 

  64. Ferdous, J., Hanafi, M. M., Rafii, M. Y. & Muhammad, K. A quick DNA extraction protocol: without liquid nitrogen in ambient temperature. Afr. J. Biotechnol. 11, 6956–6964 (2012).

    Google Scholar 

Download references