Genome-wide mapping of RNA-protein associations through sequencing

genome-wide-mapping-of-rna-protein-associations-through-sequencing
Genome-wide mapping of RNA-protein associations through sequencing
  • Liu, S. et al. Classification and function of RNA-protein interactions. Wiley Interdiscip. Rev. RNA 11, e1601 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Li, W. et al. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498, 516–520 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, F. et al. The lncRNA Firre anchors the inactive X chromosome to the nucleolus by binding CTCF and maintains H3K27me3 methylation. Genome Biol. 16, 52 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin, Y. et al. U1 snRNP regulates chromatin retention of noncoding RNAs. Nature 580, 147–150 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hentze, M. W., Castello, A., Schwarzl, T. & Preiss, T. A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol. 19, 327–341 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Thelen, M. P. & Kye, M. J. The role of RNA binding proteins for local mRNA translation: implications in neurological disorders. Front. Mol. Biosci. 6, 161 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Li, W., Deng, X. & Chen, J. RNA-binding proteins in regulating mRNA stability and translation: roles and mechanisms in cancer. Semin. Cancer Biol. 86, 664–677 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pederson, T. A layperson encounter, on the ‘modified’ RNA world. Proc. Natl Acad. Sci. USA 118, e2110706118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, L. L. Towards higher-resolution and in vivo understanding of lncRNA biogenesis and function. Nat Methods 19, 1152–1155 (2022).

    Article  CAS  PubMed  Google Scholar 

  • García-Mauriño, S. M. et al. RNA binding protein regulation and cross-talk in the control of AU-rich mRNA fate. Front. Mol. Biosci. 4, 71 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanchez de Groot, N. et al. RNA structure drives interaction with proteins. Nat. Commun. 10, 3246 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Russell, R. RNA misfolding and the action of chaperones. Front. Biosci. 13, 1–20 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witten, J. T. & Ule, J. Understanding splicing regulation through RNA splicing maps. Trends Genet. 27, 89–97 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinones-Valdez, G. et al. Regulation of RNA editing by RNA-binding proteins in human cells. Commun. Biol. 2, 19 (2019).

    Google Scholar 

  • Maziuk, B., Ballance, H. I. & Wolozin, B. Dysregulation of RNA binding protein aggregation in neurodegenerative disorders. Front. Mol. Neurosci. 10, 89 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Stanley, R. F. & Abdel-Wahab, O. Dysregulation and therapeutic targeting of RNA splicing in cancer. Nat. Cancer 3, 536–546 (2022).

    CAS  Google Scholar 

  • Enguita, F. J. et al. The interplay between lncRNAs, RNA-binding proteins and viral genome during SARS-CoV-2 infection reveals strong connections with regulatory events involved in RNA metabolism and immune response. Theranostics 12, 3946–3962 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramanathan, M., Porter, D. F. & Khavari, P. A. Methods to study RNA-protein interactions. Nat. Methods 16, 225–234 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gräwe, C., Stelloo, S., van Hout, F. A. H. & Vermeulen, M. RNA-centric methods: toward the interactome of specific RNA transcripts. Trends Biotechnol. 39, 890–900 (2021).

    Article  PubMed  Google Scholar 

  • Garcia-Moreno, M. et al. System-wide profiling of RNA-binding proteins uncovers key regulators of virus infection. Mol. Cell 74, 196–211 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, R., Han, M., Meng, L. & Chen, X. Transcriptome-wide discovery of coding and noncoding RNA-binding proteins. Proc. Natl Acad. Sci. USA 115, E3879–E3887 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao, X. et al. Capturing the interactome of newly transcribed RNA. Nat. Methods 15, 213–220 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McHugh, C. A. & Guttman, M. RAP-MS: a method to identify proteins that interact directly with a specific RNA molecule in cells. Methods Mol. Biol. 1649, 473–488 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Matia-González, A. M., Iadevaia, V. & Gerber, A. P. A versatile tandem RNA isolation procedure to capture in vivo formed mRNA-protein complexes. Methods 118–119, 93–100 (2017).

    Article  PubMed  Google Scholar 

  • Zeng, F. et al. A protocol for PAIR: PNA-assisted identification of RNA binding proteins in living cells. Nat. Protoc. 1, 920–927 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Tsai, B. P., Wang, X., Huang, L. & Waterman, M. L. Quantitative profiling of in vivo-assembled RNA-protein complexes using a novel integrated proteomic approach. Mol. Cell Proteomics 10, M110.007385 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramanathan, M. et al. RNA-protein interaction detection in living cells. Nat. Methods 15, 207–212 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsue, A. F. et al. Oligonucleotide-mediated proximity-interactome mapping (O-MAP): a unified method for RNA-targeted microenvironment-mapping in situ. Nat. Methods 21, 2058–2071 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin, W., Cho, K. F., Cavanagh, P. E. & Ting, A. Y. Deciphering molecular interactions by proximity labeling. Nat. Methods 18, 133–143 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weissinger, R., Heinold, L., Akram, S., Jansen, R. P. & Hermesh, O. RNA proximity labeling: a new detection tool for RNA-protein interactions. Molecules 26, 2270 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z. et al. Capturing RNA-protein interaction via CRUIS. Nucleic Acids Res. 48, e52 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y. et al. CBRPP: a new RNA-centric method to study RNA-protein interactions. RNA Biol. 18, 1608–1621 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert, C. & Svejstrup, J. Q. RNA immunoprecipitation for determining RNA-protein associations in vivo. Curr. Protoc. Mol. Biol. Chapter 27, Unit 27.4 (2006).

    PubMed  Google Scholar 

  • Hafner, M. et al. CLIP and complementary methods. Nat. Rev. Methods Primers 1, 20 (2021).

    Article  CAS  Google Scholar 

  • Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • König, J. et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 17, 909–915 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Licatalosi, D. D. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Nostrand, E. L. et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods. 13, 508–514 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Nawaz, A. et al. Serine 970 of RNA helicase MOV10 is phosphorylated and controls unfolding activity and fate of mRNAs targeted for AGO2-mediated. silencing. J. Biol. Chem. 299, 104577 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Weyn-Vanhentenryck, S. M. et al. HITS-CLIP and integrative modeling define the Rbfox splicing-regulatory network linked to brain development and autism. Cell Rep. 6, 1139–1152 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarnegar, B. J. et al. irCLIP platform for efficient characterization of protein-RNA interactions. Nat. Methods 13, 489–492 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinze, F. et al. Expanding the map of protein-RNA interaction sites via cell fusion followed by PAR-CLIP. RNA Biol. 15, 359–368 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu, J. et al. GoldCLIP: gel-omitted ligation-dependent CLIP. Genomics Proteomics Bioinformatics 16, 136–143 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Porter, D. F. et al. easyCLIP analysis of RNA-protein interactions incorporating absolute quantification. Nat. Commun. 12, 1569 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMahon, A. C. et al. TRIBE: hijacking an RNA-editing enzyme to identify cell-specific targets of RNA-binding proteins. Cell 165, 742–753 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman, R., Xu, W., Jin, H. & Rosbash, M. Identification of RNA-binding protein targets with HyperTRIBE. Nat. Protoc. 13, 1829–1849 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo, K. W. & Kleiner, R. E. Profiling dynamic RNA-protein interactions using small-molecule-induced RNA editing. Nat. Chem. Biol. 19, 1361–1371 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, K. L. et al. Revealing protein-protein interactions at the transcriptome scale by sequencing. Mol. Cell. 81, 4091–4103.e9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat. Soc. Series B Stat. Methodol. 57, 289–300 (1995).

    Article  Google Scholar 

  • Gene Ontology Consortium & Aleksander, S. A. et al. The Gene Ontology knowledgebase in 2023. Genetics. 224, iyad031 (2023).

    Article  Google Scholar 

  • Protter, D. S. W. & Parker, R. Principles and properties of stress granules. Trends Cell Biol. 26, 668–679 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caudron-Herger, M., Jansen, R. E., Wassmer, E. & Diederichs, S. RBP2GO: a comprehensive pan-species database on RNA-binding proteins, their interactions and functions. Nucleic Acids Res. 49, D425–D436 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Cook, K. B., Kazan, H., Zuberi, K., Morris, Q. & Hughes, T. R. RBPDB: a database of RNA-binding specificities. Nucleic Acids Res. 39, D301–D308 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Giudice, G., Sánchez-Cabo, F., Torroja, C. & Lara-Pezzi, E. ATtRACT-a database of RNA-binding proteins and associated motifs. Database 2016, baw035 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh P., Murugavel P. & Sowdhamini R. hRBPome: a central repository of all known human RNA-binding proteins. Preprint at bioRxiv http://biorxiv.org/lookup/doi/10.1101/269043 (2018).

  • Perez-Perri, J. I. et al. Discovery of RNA-binding proteins and characterization of their dynamic responses by enhanced RNA interactome capture. Nat. Commun. 9, 4408 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, J. H., Liu, S., Zhou, H., Qu, L. H. & Yang, J. H. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 42, D92–D97 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Mullari, M., Lyon, D., Jensen, L. J. & Nielsen, M. L. Specifying RNA-binding regions in proteins by peptide cross-linking and affinity purification. J. Proteome Res. 16, 2762–2772 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Castello, A. et al. Comprehensive identification of RNA-binding domains in human cells. Mol. Cell. 63, 696–710 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang, J. et al. RNAInter v4.0: RNA interactome repository with redefined confidence scoring system and improved accessibility. Nucleic Acids Res. 50, D326–D332 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Masuda, A. et al. CUGBP1 and MBNL1 preferentially bind to 3′ UTRs and facilitate mRNA decay. Sci. Rep. 2, 209 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Oberstrass, F. C. et al. Structure of PTB bound to RNA: specific binding and implications for splicing regulation. Science. 309, 2054–2057 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Barabási, A. L. Scale-free networks: a decade and beyond. Science 325, 412–413 (2009).

    Article  PubMed  Google Scholar 

  • Van Nostrand, E. L. et al. Author correction: a large-scale binding and functional map of human RNA-binding proteins. Nature 589, E5 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye, H. et al. The SP1-induced long noncoding RNA, LINC00339, promotes tumorigenesis in colorectal cancer via the miR-378a-3p/MED19 axis. Onco. Targets Ther. 13, 11711–11724 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan, Y., Haiying, G., Zhuo, L., Ying, L. & Xin, H. Long non-coding RNA LINC00339 facilitates the tumorigenesis of non-small cell lung cancer by sponging miR-145 through targeting FOXM1. Biomed. Pharmacother. 105, 707–713 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Stelzer, G. et al. The GeneCards Suite: from gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics 54, 1.30.1–1.30.33 (2016).

    PubMed  Google Scholar 

  • Zhang, W., Xie, M., Shu, M. D., Steitz, J. A. & DiMaio, D. A proximity-dependent assay for specific RNA-protein interactions in intact cells. RNA 22, 1785–1792 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kattah, N. H., Kattah, M. G. & Utz, P. J. The U1-snRNP complex: structural properties relating to autoimmune pathogenesis in rheumatic diseases. Immunol. Rev. 233, 126–145 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid, M. A., Dai, Z. & Locasale, J. W. The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat. Cell Biol. 19, 1298–1306 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, X. et al. PHGDH expression increases with progression of Alzheimer’s disease pathology and symptoms. Cell Metab. 34, 651–653 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, X. H. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672–676 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Tran, S., Fairlie, W. D. & Lee, E. F. BECLIN1: protein structure, function and regulation. Cells 10, 1522 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wortel, I. M. N., van der Meer, L. T., Kilberg, M. S. & van Leeuwen, F. N. Surviving stress: modulation of ATF4-mediated stress responses in normal and malignant cells. Trends Endocrinol. Metab. 28, 794–806 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danzi, M. C. et al. The effect of Jun dimerization on neurite outgrowth and motif binding. Mol Cell Neurosci. 92, 114–127 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, H., Yu, H., Zhou, H., Zhu, W. & Wang, X. Elevated nuclear PHGDH synergistically functions with cMyc to reshape the immune microenvironment of liver cancer. Adv Sci. 10, e2205818 (2023).

    Article  Google Scholar 

  • Calandrelli, R. et al. Genome-wide analysis of the interplay between chromatin-associated RNA and 3D genome organization in human cells. Nat Commun. 14, 6519 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soloviev, Z. et al. Structural mass spectrometry decodes domain interaction and dynamics of the full-length Human Histone Deacetylase 2. Biochim Biophys Acta Proteins Proteom. 1870, 140759 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jankowsky, E. & Harris, M. E. Specificity and nonspecificity in RNA-protein interactions. Nat. Rev. Mol. Cell Biol. 16, 533–544 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, R. et al. Pervasive chromatin-RNA binding protein interactions enable RNA-based regulation of transcription. Cell 178, 107–121 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dethoff, E. A. & Weeks, K. M. Effects of refolding on large-scale RNA structure. Biochemistry 58, 3069–3077 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).

    Article  Google Scholar 

  • Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).

    Article  PubMed  Google Scholar 

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas, P. D. et al. PANTHER: making genome-scale phylogenetics accessible to all. Protein Sci. 31, 8–22 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. ICWSM 3, 361–362 (2009).

    Article  Google Scholar 

  • Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell. 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2013).

    Article  PubMed  Google Scholar 

  • Zhijie Q., Shuanghong, X. & Kara J. Genome-wide mapping of RNA-protein associations via sequencing. Datasets. Gene Expression Omnibus https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE270010 (2025).

  • Chen, J., Zhao, W., Qi, Z. & Wen, X. Identification of PHGDH protein-assocaited RNAs and their overlap with PRIM-seq derived RNAs through RIP-seq. Datasets. Gene Expression Omnibus https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE270009 (2025).

  • Qi, Z. PRIMseqTools. Source code. GitHub https://github.com/Zhong-Lab-UCSD/PRIMseqTools.git (2025).