Genomic and phenotypic insights into quorum sensing-mediated spoilage of Morganella psychrotolerans isolated from tuna

genomic-and-phenotypic-insights-into-quorum-sensing-mediated-spoilage-of-morganella-psychrotolerans-isolated-from-tuna
Genomic and phenotypic insights into quorum sensing-mediated spoilage of Morganella psychrotolerans isolated from tuna

References

  1. Yin, T. & Shi, L. Processing and preservation of aquatic products. Foods 12, 2061 (2023).

    Google Scholar 

  2. FAO. The State of World Fisheries and Aquaculture 2024:: Blue Transformation in Action. (FAO., 2024).

  3. Zhuang, S. et al. Biochemical changes and amino acid deamination & decarboxylation activities of spoilage microbiota in chill-stored grass carp (Ctenopharyngodon idella) fillets. Food Chem. 336, 127683 (2021).

    Google Scholar 

  4. Zhuang, S. et al. Exploration of the roles of spoilage bacteria in degrading grass carp proteins during chilled storage: a combined metagenomic and metabolomic approach. Food Res. Int. 152, 110926 (2022).

    Google Scholar 

  5. Huang, Q. et al. Changes in physicochemical properties of silver carp (Hypophthalmichthys molitrix) surimi during chilled storage: the roles of spoilage bacteria. Food Chem. 387, 132847 (2022).

    Google Scholar 

  6. Bjornsdottir-Butler, K., Leon, M. S. & Benner, R. A. Draft genome sequences of histamine-producing Morganella psychrotolerans strains. Genome Announc 4, e01001–e01016 (2016).

    Google Scholar 

  7. Tomaru, A., Toda, M. & Hara-Kudo, Y. Literature review on the type of fish and histamine-producing bacteria associated with histamine poisonings in Japan. J. Food Hyg. Soc. Jpn 63, 109–116 (2022).

    Google Scholar 

  8. Emborg, J., Ahrens, P. & Dalgaard, P. Morganella psychrotolerans – Identification, histamine formation and importance for histamine fish poisoning. (Technical University of Denmark, 2007).

  9. Emborg, J., Dalgaard, P. & Ahrens, P. Morganella psychrotolerans sp. nov., a histamine-producing bacterium isolated from various seafoods. Int. J. Syst. Evolut. Microbiol. 56, 2473–2479 (2006).

    Google Scholar 

  10. Emborg, J. & Dalgaard, P. Formation of histamine and biogenic amines in cold-smoked tuna: an investigation of psychrotolerant bacteria from samples implicated in cases of histamine fish poisoning. J. Food Prot. 69, 897–906 (2006).

    Google Scholar 

  11. Li, J. et al. Contamination of Morganella psychrotolerans in fish products and histamine production capacity of the isolated strains. Food Sci. 45, 5275–5282 (2024).

    Google Scholar 

  12. Waters, C. M. & Bassler, B. L. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346 (2005).

    Google Scholar 

  13. Shi, Q. et al. Virtual screening–based discovery of AI-2 quorum sensing inhibitors that interact with an allosteric hydrophobic site of LsrK and their functional evaluation. Front. Chem. 11, 1185224 (2023).

    Google Scholar 

  14. Miller, M. B. & Bassler, B. L. Quorum sensing in bacteria. Annu. Rev. Microbiol 55, 165–199 (2001).

    Google Scholar 

  15. Mangwani, N., Dash, H. R., Chauhan, A. & Das, S. Bacterial quorum sensing: functional features and potential applications in biotechnology. Micro. Physiol. 22, 215–227 (2012).

    Google Scholar 

  16. Wang, Y., Li, X., Zhang, G., Bi, J. & Hou, H. Transcriptome reveals regulation of quorum sensing of Hafnia alvei H4 on the coculture system of Hafnia alvei H4 and Pseudomonas fluorescens ATCC13525. Foods 13, 336 (2024).

    Google Scholar 

  17. Blana, V. A. & Nychas, G.-J. E. Presence of quorum sensing signal molecules in minced beef stored under various temperature and packaging conditions. Int. J. Food Microbiol. 173, 1–8 (2014).

    Google Scholar 

  18. Zhao, J., Quan, C., Jin, L. & Chen, M. Production, detection and application perspectives of quorum sensing autoinducer-2 in bacteria. J. Biotechnol. 268, 53–60 (2018).

    Google Scholar 

  19. Fu, L., Wang, C., Liu, N., Ma, A. & Wang, Y. Quorum sensing system-regulated genes affect the spoilage potential of Shewanella baltica. Food Res. Int. 107, 1–9 (2018).

    Google Scholar 

  20. Tomaś, N. & Myszka, K. Current advances in the concept of quorum sensing-based prevention of spoilage of fish products by Pseudomonads. Appl. Sci. 12, 6719 (2022).

    Google Scholar 

  21. Hu, Z. et al. Inhibition of citral nanoemulsion to growth, spoilage ability and AI-2/ luxS quorum sensing system of Shewanella putrefaciens CN-32: a study on bacteriostasis from in vitro culture and gene expression analysis. Food Qual. Saf. 6, fyac044 (2022).

    Google Scholar 

  22. Hu, Z. et al. The luxS deletion reduces the spoilage ability of Shewanella putrefaciens: an analysis focusing on quorum sensing and activated methyl cycle. Food Microbiol. 120, 104467 (2024).

    Google Scholar 

  23. Li, J. et al. Complete genome sequence provides insights into the quorum sensing-related spoilage potential of Shewanella baltica 128 isolated from spoiled shrimp. Genomics 112, 736–748 (2020).

    Google Scholar 

  24. Liu, L. et al. Complete genome sequence provides information on quorum sensing related spoilage and virulence of Aeromonas salmonicida GMT3 isolated from spoiled sturgeon. Food Res. Int. 196, 115039 (2024).

    Google Scholar 

  25. Meng, F. et al. Virtual screening and in vitro experimental verification of LuxS inhibitors from natural products for Lactobacillus reuteri. Biomed. Pharmacother. 147, 112521 (2022).

    Google Scholar 

  26. Zong, B. et al. Baicalin weakens the virulence of porcine extraintestinal pathogenic Escherichia coli by inhibiting the LuxS/AI-2 quorum-sensing system. Biomolecules 14, 452 (2024).

    Google Scholar 

  27. Galperin, M. Y., Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 43, D261–D269 (2015).

    Google Scholar 

  28. Tomaś, N., Myszka, K. & Wolko, Ł Black pepper and tarragon essential oils suppress the lipolytic potential and the type II secretion system of P. psychrophila KM02. Sci. Rep. 12, 5487 (2022).

    Google Scholar 

  29. Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat. Genet 25, 25–29 (2000).

    Google Scholar 

  30. Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Google Scholar 

  31. Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951 (2019).

    Google Scholar 

  32. Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res 51, D587–D592 (2023).

    Google Scholar 

  33. Houicher, A., Bensid, A., Regenstein, J. M. & Özogul, F. Control of biogenic amine production and bacterial growth in fish and seafood products using phytochemicals as biopreservatives: a review. Food Biosci. 39, 100807 (2021).

    Google Scholar 

  34. Visciano, P., Schirone, M. & Paparella, A. An overview of histamine and other biogenic amines in fish and fish products. Foods 9, 1795 (2020).

    Google Scholar 

  35. Ding, T. & Li, Y. Biogenic amines are important indices for characterizing the freshness and hygienic quality of aquatic products: a review. LWT 194, 115793 (2024).

    Google Scholar 

  36. Wang, D. et al. Elucidating the potential of chlorogenic acid for controlling Morganella psychrotolerans growth and histamine formation. J. Appl. Microbiol. 135, lxad308 (2024).

    Google Scholar 

  37. Remenant, B., Jaffrès, E., Dousset, X., Pilet, M.-F. & Zagorec, M. Bacterial spoilers of food: Behavior, fitness and functional properties. Food Microbiol. 45, 45–53 (2015).

    Google Scholar 

  38. Wang, D. et al. Complete genome analysis reveals the quorum sensing-related spoilage potential of Pseudomonas fluorescens PF08, a specific spoilage organism of turbot (Scophthalmus maximus). Front. Microbiol. 13, 856802 (2022).

    Google Scholar 

  39. Wang, X.-Y., Yan, J. & Xie, J. Applications of genomics, metabolomics, fourier transform infrared in the evaluation of spoilage targets of Shewanella putrefaciens from spoiled bigeye tuna. J. Agric. Food Chem. 71, 9558–9568 (2023).

    Google Scholar 

  40. Abril, A. G. et al. Comprehensive shotgun proteomic characterization and virulence factors of seafood spoilage bacteria. Food Chem. 448, 139045 (2024).

    Google Scholar 

  41. Jia, S. et al. Insights into the fish protein degradation induced by the fish-borne spoiler Pseudomonas psychrophila and Shewanella putrefaciens: from whole genome sequencing to quality changes. Int. J. Food Microbiol. 416, 110675 (2024).

    Google Scholar 

  42. Winzer, K., Hardie, K. R. & Williams, P. LuxS and autoinducer-2: their contribution to quorum sensing and metabolism in bacteria. Adv. Appl Microbiol. 53, 291–396 (2003).

    Google Scholar 

  43. Skandamis, P. N. & Nychas, G.-J. E. Quorum sensing in the context of food microbiology. Appl. Environ. Microbiol. 78, 5473–5482 (2012).

    Google Scholar 

  44. De Keersmaecker, S. C. J., Sonck, K. & Vanderleyden, J. Let LuxS speak up in AI-2 signaling. Trends Microbiol. 14, 114–119 (2006).

    Google Scholar 

  45. Chen, X. et al. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415, 545–549 (2002).

    Google Scholar 

  46. Miller, S. T. et al. Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Mol. Cell 15, 677–687 (2004).

    Google Scholar 

  47. Parker, C. T. et al. Genetic and mechanistic analyses of the periplasmic domain of the enterohemorrhagic Escherichia coli QseC histidine sensor kinase. J. Bacteriol. 199, e00861–16 (2017).

    Google Scholar 

  48. Dong, H., Gai, Y., Fu, S. & Zhang, D. Application of biotechnology in specific spoilage organisms of aquatic products. Front. Bioeng. Biotechnol. 10, 895283 (2022).

  49. Alvarez-Ordóñez, A., Broussolle, V., Colin, P., Nguyen-The, C. & Prieto, M. The adaptive response of bacterial food-borne pathogens in the environment, host and food: implications for food safety. Int. J. Food Microbiol. 213, 99–109 (2015).

    Google Scholar 

  50. Jääskeläinen, E. et al. Metabolomics and bacterial diversity of packaged yellowfin tuna (Thunnus albacares) and salmon (Salmo salar) show fish species-specific spoilage development during chilled storage. Int. J. Food Microbiol. 293, 44–52 (2019).

    Google Scholar 

  51. Jiang, W., Hou, Y. & Inouye, M. CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J. Biol. Chem. 272, 196–202 (1997).

    Google Scholar 

  52. Phadtare, S. Recent developments in bacterial cold-shock response. Curr. Issues Mol. Biol. 6, 125–136 (2004).

    Google Scholar 

  53. Ray, S., Da Costa, R., Thakur, S. & Nandi, D. Salmonella Typhimurium encoded cold shock protein E is essential for motility and biofilm formation. Microbiology 166, 460–473 (2020).

    Google Scholar 

  54. Muchaamba, F., von Ah, U., Stephan, R., Stevens, M. J. A. & Tasara, T. Deciphering the global roles of Cold shock proteins in Listeria monocytogenes nutrient metabolism and stress tolerance. Front. Microbiol 13, 1057754 (2022).

    Google Scholar 

  55. Shimamoto, T. et al. The NhaB Na+/H+ antiporter is essential for intracellular pH regulation under alkaline conditions in Escherichia coli. J. Biochem 116, 285–290 (1994).

    Google Scholar 

  56. Padan, E. et al. The molecular mechanism of regulation of the NhaA Na+/H+ antiporter of Escherichia coli, a key transporter in the adaptation to Na+ and H+. Novartis Found. Symp. 221, 183–196 (1999).

    Google Scholar 

  57. Su, J., Gong, H., Lai, J., Main, A. & Lu, S. The potassium transporter Trk and external potassium modulate Salmonella enterica protein secretion and virulence. Infect. Immun. 77, 667–675 (2009).

    Google Scholar 

  58. Liu, X. et al. Role of RpoS in stress resistance, quorum sensing and spoilage potential of Pseudomonas fluorescens. Int. J. Food Microbiol. 270, 31–38 (2018).

    Google Scholar 

  59. Liu, X. et al. Involvement of RpoN in regulating motility, biofilm, resistance, and spoilage potential of Pseudomonas fluorescens. Front. Microbiol. 12, 641844 (2021).

    Google Scholar 

  60. Feng, L., Bi, W., Chen, S., Zhu, J. & Liu, X. Regulatory function of sigma factors RpoS/RpoN in adaptation and spoilage potential of Shewanella baltica. Food Microbiol. 97, 103755 (2021).

    Google Scholar 

  61. Shao, C. et al. LuxS-dependent AI-2 regulates versatile functions in Enterococcus faecalis V583. J. Proteome Res. 11, 4465–4475 (2012).

    Google Scholar 

  62. Tian, J., Liang, Y., Ragauskas, A. J., Zhong, Y. & Lin, Y. Effects of AI-2 quorum sensing inhibitors on mitigating bacterial contamination in bioethanol production. Biomass. Bioenergy 184, 107211 (2024).

    Google Scholar 

  63. Peng, L.-Y. et al. Anti-bacterial activity of baicalin against APEC through inhibition of quorum sensing and inflammatory responses. Sci. Rep. 9, 4063 (2019).

    Google Scholar 

  64. Wang, Y. et al. Genomic analysis of two histamine-producing strains isolated from yellowfin tuna. Foods 14, 1532 (2025).

    Google Scholar 

  65. Taga, M. E. & Xavier, K. B. Methods for analysis of bacterial autoinducer-2 production. Curr. Protoc. Microbiol. 23, 9780471729259 (2011).

  66. Zou, Z. et al. A non-destructive detection method of protein and TVB-N content changes in refrigerated and frozen-thawed salmon fillets using fluorescence hyperspectral technology. J. Food Composition Anal. 133, 106435 (2024).

    Google Scholar 

  67. Zhao, Y. et al. Novel insight into physicochemical and flavor formation in naturally fermented tilapia sausage based on microbial metabolic network. Food Res. Int. 141, 110122 (2021).

    Google Scholar 

  68. Wang, D. et al. Changes in microbial composition and quality characteristics of yellowfin tuna under different storage temperature. Qual. Assur. Saf. Crops Foods 13, 54–61 (2021).

    Google Scholar 

  69. Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001).

    Google Scholar 

Download references