References
-
Tchieno, F. M. M. & Tonle, I. K. p-Nitrophenol determination and remediation: An overview. Rev. Anal. Chem. 37, 20170019 (2018).
-
Kuang, S. et al. Effects of p-nitrophenol on enzyme activity, histology, and gene expression in Larimichthys crocea. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 228, 108638 (2020).
-
Stavrakakis, I., Remmas, N., Melidis, P. & Ntougias, S. Effect of the oxidative phosphorylation uncoupler para-nitrophenol on the activated sludge community structure and performance of a submerged membrane bioreactor. Water 13, 3222 (2021).
-
Rodrigues, C. S. et al. Degradation of p-Nitrophenol by activated persulfate with carbon-based materials. J. Environ. Manage 343, 118140 (2023).
-
Jaiswal, S. & Shukla, P. Alternative strategies for microbial remediation of pollutants via synthetic biology. Front. Microbiol 11, 808 (2020).
-
Sengupta, K., Swain, M. T., Livingstone, P. G., Whitworth, D. E. & Saha, P. Genome sequencing and comparative transcriptomics provide a holistic view of 4-nitrophenol degradation and concurrent fatty acid catabolism by Rhodococcus sp. strain BUPNP1. Front. Microbiol. 9, 3209 (2019).
-
Alam, S. A. & Saha, P. Evidence of p-nitrophenol biodegradation and study of genomic attributes from a newly isolated aquatic bacterium Pseudomonas asiatica strain PNPG3. Soil Sediment Contam Soil Sediment Contam. Int. J. 32, 994–1011 (2022).
-
Alam, S. A. & Saha, P. Chemotactic response of p-nitrophenol degrading Pseudomonas asiatica strain PNPG3 through phenotypic and genome sequence-based in silico studies. 3 Biotech 13, 408 (2023).
-
Abbas, S. et al. Molecular characterization of heavy metal-tolerant bacteria and their potential for bioremediation and plant growth promotion. Front. Microbiol 16, 1644466 (2025).
-
Jan, A. T. et al. Heavy metals and human health: mechanistic insight into toxicity and counter defense system of antioxidants. Int. J. Mol. Sci. 16, 29592–29630 (2015).
-
Akhter, M., Tasleem, M., Alam, M. M. & Ali, S. In silico approach for bioremediation of arsenic by structure prediction and docking studies of arsenite oxidase from Pseudomonas stutzeri TS44. Int. Biodeterior. Biodegradation 122, 82–91 (2017).
-
DesMarias, T. L. & Costa, M. Mechanisms of chromium-induced toxicity. Curr. Opin. Toxicol. 14, 1–7 (2019).
-
Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A. & Catalano, A. The effects of cadmium toxicity. Int. J. Environ. Res. Public Health 17, 3782 (2020).
-
Alam, S. A. & Saha, P. Azoreductases of Pseudomonas sp. PNPG3: A bioinformatics and molecular simulation study for azo dye detoxification. J. Biomol. Struct. Dyn. https://doi.org/10.1080/07391102.2025.2562136 (2025).
-
Alam, S. A. & Saha, P. Biodegradation of p-nitrophenol by a member of the genus Brachybacterium, isolated from the river Ganges. 3 Biotech 12, 1–10 (2022).
-
Alam, S. A., Khan, B., Karmakar, D., Mandal, R. & Saha, P. Integrative bioinformatics and chemotactic insights into p-nitrophenol bioremediation by halotolerant aquatic Pseudomonas sp. strain PNPBRP5 (2). Arch. Microbiol. 207, 1–12 (2025).
-
White, G. F., Snape, J. R. & Nicklin, S. Biodegradation of glycerol trinitrate and pentaerythritol tetranitrate by Agrobacterium radiobacter. Appl. Environ. Microbiol. 62, 637–642 (1996).
-
Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: A new versatile metagenomic assembler. Genome Res. 27(5), 824–834 (2017).
-
Aziz, R. K. et al. The RAST Server: Rapid annotations using subsystems technology. BMC Genom. 9, 75 (2008).
-
Tatusova, T. et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44, 6614–6624 (2016).
-
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
-
Pellegrinetti, T. A. et al. PGPg_finder: A comprehensive and user-friendly pipeline for identifying plant growth-promoting genes in genomic and metagenomic data. Rhizosphere 30, 100905 (2024).
-
Artimo, P. et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 40, 597–603 (2012).
-
Geourjon, C. & Deleage, G. SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinform 11, 681–684 (1995).
-
Klausen, M. S. et al. NetSurfP-2.0: Improved prediction of protein structural features by integrated deep learning. Proteins: Struct., Funct., Bioinf. 87, 520–527 (2019).
-
Arnold, K., Bordoli, L., Kopp, J. & Schwede, T. The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinform 22, 195–201 (2006).
-
Colovos, C. & Yeates, T. O. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci. 2, 1511–1519 (1993).
-
Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: A program to check the stereochemical quality of protein structures. Appl. Crystallogr. 26, 283–291 (1993).
-
Jendele, L., Krivak, R., Skoda, P., Novotny, M. & Hoksza, D. PrankWeb: A web server for ligand binding site prediction and visualization. Nucleic Acids Res. 47, 345–349 (2019).
-
Liu, Y. et al. CB-Dock2: Improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res. 50, 159–164 (2022).
-
Laskowski, R. A. & Swindells, M. B. LigPlot+: Multiple ligand–protein interaction diagrams for drug discovery. J. Chem. Inf. Model 51, 2778–2786 (2011).
-
Wu, Y., Tepper, H. L. & Voth, G. A. Flexible simple point-charge water model with improved liquid-state properties. J. Chem. Phys. 124, 024503 (2006).
-
David, C. C., Jacobs, D. J. Principal component analysis: a method for determining the essential dynamics of proteins. In Protein dynamics: Methods and protocols 193–226. Totowa, NJ: Humana Press (2013).
-
Sengupta, K., Maiti, T. K. & Saha, P. Degradation of 4-nitrophenol in presence of heavy metals by a halotolerant Bacillus sp. strain BUPNP2, having plant growth promoting traits. Symbiosis 65, 157–163 (2015).
-
Tempestti, J. C. M. et al. Detoxification of p-nitrophenol (PNP) using Enterococcus gallinarum JT-02 isolated from animal farm waste sludge. Environ. Res. 231, 116289 (2023).
-
Chakraborti, D. et al. Groundwater arsenic contamination in the Ganga River Basin: A future health danger. Int. J. Environ. Res. Public Health. 15, 180 (2018).
-
William, V. U. & Magpantay, H. D. Arsenic and microorganisms: Genes, molecular mechanisms, and recent advances in microbial arsenic bioremediation. Microorganisms 12, 74 (2023).
-
Khan, Z., Nisar, M. A., Hussain, S. Z., Arshad, M. N. & Rehman, A. Cadmium resistance mechanism in Escherichia coli P4 and its potential use to bioremediate environmental cadmium. Appl. Microbiol. Biotechnol 99, 10745–10757 (2015).
-
Moore, C. M., Gaballa, A., Hui, M., Ye, R. W. & Helmann, J. D. Genetic and physiological responses of Bacillus subtilis to metal ion stress. Mol. Microbiol. 57, 27–40 (2005).
-
Tasleem, M., El-Sayed, A. A. A., Hussein, W. M. & Alrehaily, A. Bioremediation of chromium-contaminated groundwater using chromate reductase from Pseudomonas putida: An in silico approach. Water 15, 150 (2022).
-
Mitra, P., Singha, S., Roy, P., Saha, D. & Chatterjee, S. A molecular docking study between heavy metals and hydrophilic Hsp70 protein to explore binding pockets. J. Proteins Proteomics 15, 413–428 (2024).
-
Yan, G. et al. Genetic mechanisms of arsenic detoxification and metabolism in bacteria. Curr. Genet. 65, 329–338 (2019).
-
Fekih, I. B. et al. Distribution of arsenic resistance genes in prokaryotes. Front. Microbiol. 9, 2473 (2018).
-
Butcher, B. G., Deane, S. M. & Rawlings, D. E. The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. Appl. Environ. Microbiol. 66, 1826–1833 (2000).
-
Ji, G. & Silver, S. Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258. J. Bacteriol. 174, 3684–3694 (1992).
-
Neyt, C., Iriarte, M., Thi, V. H. & Cornelis, G. R. Virulence and arsenic resistance in Yersiniae. J. Bacteriol. 179, 612–619 (1997).
-
Li, X. & Krumholz, L. R. Regulation of arsenate resistance in Desulfovibrio desulfuricans G20 by an arsRBCC operon and an arsC gene. J. Bacteriol. 189, 3705–3711 (2007).
