Genomic and structural elucidation of multi-heavy metal tolerance in the p-nitrophenol-degrading bacterium Pseudomonas asiatica strain PNPG3

genomic-and-structural-elucidation-of-multi-heavy-metal-tolerance-in-the-p-nitrophenol-degrading-bacterium pseudomonas-asiatica-strain-pnpg3
Genomic and structural elucidation of multi-heavy metal tolerance in the p-nitrophenol-degrading bacterium Pseudomonas asiatica strain PNPG3

References

  1. Tchieno, F. M. M. & Tonle, I. K. p-Nitrophenol determination and remediation: An overview. Rev. Anal. Chem. 37, 20170019 (2018).

    Google Scholar 

  2. Kuang, S. et al. Effects of p-nitrophenol on enzyme activity, histology, and gene expression in Larimichthys crocea. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 228, 108638 (2020).

    Google Scholar 

  3. Stavrakakis, I., Remmas, N., Melidis, P. & Ntougias, S. Effect of the oxidative phosphorylation uncoupler para-nitrophenol on the activated sludge community structure and performance of a submerged membrane bioreactor. Water 13, 3222 (2021).

    Google Scholar 

  4. Rodrigues, C. S. et al. Degradation of p-Nitrophenol by activated persulfate with carbon-based materials. J. Environ. Manage 343, 118140 (2023).

    Google Scholar 

  5. Jaiswal, S. & Shukla, P. Alternative strategies for microbial remediation of pollutants via synthetic biology. Front. Microbiol 11, 808 (2020).

    Google Scholar 

  6. Sengupta, K., Swain, M. T., Livingstone, P. G., Whitworth, D. E. & Saha, P. Genome sequencing and comparative transcriptomics provide a holistic view of 4-nitrophenol degradation and concurrent fatty acid catabolism by Rhodococcus sp. strain BUPNP1. Front. Microbiol. 9, 3209 (2019).

    Google Scholar 

  7. Alam, S. A. & Saha, P. Evidence of p-nitrophenol biodegradation and study of genomic attributes from a newly isolated aquatic bacterium Pseudomonas asiatica strain PNPG3. Soil Sediment Contam Soil Sediment Contam. Int. J. 32, 994–1011 (2022).

    Google Scholar 

  8. Alam, S. A. & Saha, P. Chemotactic response of p-nitrophenol degrading Pseudomonas asiatica strain PNPG3 through phenotypic and genome sequence-based in silico studies. 3 Biotech 13, 408 (2023).

    Google Scholar 

  9. Abbas, S. et al. Molecular characterization of heavy metal-tolerant bacteria and their potential for bioremediation and plant growth promotion. Front. Microbiol 16, 1644466 (2025).

    Google Scholar 

  10. Jan, A. T. et al. Heavy metals and human health: mechanistic insight into toxicity and counter defense system of antioxidants. Int. J. Mol. Sci. 16, 29592–29630 (2015).

    Google Scholar 

  11. Akhter, M., Tasleem, M., Alam, M. M. & Ali, S. In silico approach for bioremediation of arsenic by structure prediction and docking studies of arsenite oxidase from Pseudomonas stutzeri TS44. Int. Biodeterior. Biodegradation 122, 82–91 (2017).

    Google Scholar 

  12. DesMarias, T. L. & Costa, M. Mechanisms of chromium-induced toxicity. Curr. Opin. Toxicol. 14, 1–7 (2019).

    Google Scholar 

  13. Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A. & Catalano, A. The effects of cadmium toxicity. Int. J. Environ. Res. Public Health 17, 3782 (2020).

    Google Scholar 

  14. Alam, S. A. & Saha, P. Azoreductases of Pseudomonas sp. PNPG3: A bioinformatics and molecular simulation study for azo dye detoxification. J. Biomol. Struct. Dyn. https://doi.org/10.1080/07391102.2025.2562136 (2025).

    Google Scholar 

  15. Alam, S. A. & Saha, P. Biodegradation of p-nitrophenol by a member of the genus Brachybacterium, isolated from the river Ganges. 3 Biotech 12, 1–10 (2022).

    Google Scholar 

  16. Alam, S. A., Khan, B., Karmakar, D., Mandal, R. & Saha, P. Integrative bioinformatics and chemotactic insights into p-nitrophenol bioremediation by halotolerant aquatic Pseudomonas sp. strain PNPBRP5 (2). Arch. Microbiol. 207, 1–12 (2025).

    Google Scholar 

  17. White, G. F., Snape, J. R. & Nicklin, S. Biodegradation of glycerol trinitrate and pentaerythritol tetranitrate by Agrobacterium radiobacter. Appl. Environ. Microbiol. 62, 637–642 (1996).

    Google Scholar 

  18. Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: A new versatile metagenomic assembler. Genome Res. 27(5), 824–834 (2017).

    Google Scholar 

  19. Aziz, R. K. et al. The RAST Server: Rapid annotations using subsystems technology. BMC Genom. 9, 75 (2008).

    Google Scholar 

  20. Tatusova, T. et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44, 6614–6624 (2016).

    Google Scholar 

  21. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Google Scholar 

  22. Pellegrinetti, T. A. et al. PGPg_finder: A comprehensive and user-friendly pipeline for identifying plant growth-promoting genes in genomic and metagenomic data. Rhizosphere 30, 100905 (2024).

    Google Scholar 

  23. Artimo, P. et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 40, 597–603 (2012).

    Google Scholar 

  24. Geourjon, C. & Deleage, G. SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinform 11, 681–684 (1995).

    Google Scholar 

  25. Klausen, M. S. et al. NetSurfP-2.0: Improved prediction of protein structural features by integrated deep learning. Proteins: Struct., Funct., Bioinf. 87, 520–527 (2019).

    Google Scholar 

  26. Arnold, K., Bordoli, L., Kopp, J. & Schwede, T. The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinform 22, 195–201 (2006).

    Google Scholar 

  27. Colovos, C. & Yeates, T. O. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci. 2, 1511–1519 (1993).

    Google Scholar 

  28. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: A program to check the stereochemical quality of protein structures. Appl. Crystallogr. 26, 283–291 (1993).

    Google Scholar 

  29. Jendele, L., Krivak, R., Skoda, P., Novotny, M. & Hoksza, D. PrankWeb: A web server for ligand binding site prediction and visualization. Nucleic Acids Res. 47, 345–349 (2019).

    Google Scholar 

  30. Liu, Y. et al. CB-Dock2: Improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res. 50, 159–164 (2022).

    Google Scholar 

  31. Laskowski, R. A. & Swindells, M. B. LigPlot+: Multiple ligand–protein interaction diagrams for drug discovery. J. Chem. Inf. Model 51, 2778–2786 (2011).

    Google Scholar 

  32. Wu, Y., Tepper, H. L. & Voth, G. A. Flexible simple point-charge water model with improved liquid-state properties. J. Chem. Phys. 124, 024503 (2006).

    Google Scholar 

  33. David, C. C., Jacobs, D. J. Principal component analysis: a method for determining the essential dynamics of proteins. In Protein dynamics: Methods and protocols 193–226. Totowa, NJ: Humana Press (2013).

  34. Sengupta, K., Maiti, T. K. & Saha, P. Degradation of 4-nitrophenol in presence of heavy metals by a halotolerant Bacillus sp. strain BUPNP2, having plant growth promoting traits. Symbiosis 65, 157–163 (2015).

    Google Scholar 

  35. Tempestti, J. C. M. et al. Detoxification of p-nitrophenol (PNP) using Enterococcus gallinarum JT-02 isolated from animal farm waste sludge. Environ. Res. 231, 116289 (2023).

    Google Scholar 

  36. Chakraborti, D. et al. Groundwater arsenic contamination in the Ganga River Basin: A future health danger. Int. J. Environ. Res. Public Health. 15, 180 (2018).

    Google Scholar 

  37. William, V. U. & Magpantay, H. D. Arsenic and microorganisms: Genes, molecular mechanisms, and recent advances in microbial arsenic bioremediation. Microorganisms 12, 74 (2023).

    Google Scholar 

  38. Khan, Z., Nisar, M. A., Hussain, S. Z., Arshad, M. N. & Rehman, A. Cadmium resistance mechanism in Escherichia coli P4 and its potential use to bioremediate environmental cadmium. Appl. Microbiol. Biotechnol 99, 10745–10757 (2015).

    Google Scholar 

  39. Moore, C. M., Gaballa, A., Hui, M., Ye, R. W. & Helmann, J. D. Genetic and physiological responses of Bacillus subtilis to metal ion stress. Mol. Microbiol. 57, 27–40 (2005).

    Google Scholar 

  40. Tasleem, M., El-Sayed, A. A. A., Hussein, W. M. & Alrehaily, A. Bioremediation of chromium-contaminated groundwater using chromate reductase from Pseudomonas putida: An in silico approach. Water 15, 150 (2022).

    Google Scholar 

  41. Mitra, P., Singha, S., Roy, P., Saha, D. & Chatterjee, S. A molecular docking study between heavy metals and hydrophilic Hsp70 protein to explore binding pockets. J. Proteins Proteomics 15, 413–428 (2024).

    Google Scholar 

  42. Yan, G. et al. Genetic mechanisms of arsenic detoxification and metabolism in bacteria. Curr. Genet. 65, 329–338 (2019).

    Google Scholar 

  43. Fekih, I. B. et al. Distribution of arsenic resistance genes in prokaryotes. Front. Microbiol. 9, 2473 (2018).

    Google Scholar 

  44. Butcher, B. G., Deane, S. M. & Rawlings, D. E. The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. Appl. Environ. Microbiol. 66, 1826–1833 (2000).

    Google Scholar 

  45. Ji, G. & Silver, S. Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258. J. Bacteriol. 174, 3684–3694 (1992).

    Google Scholar 

  46. Neyt, C., Iriarte, M., Thi, V. H. & Cornelis, G. R. Virulence and arsenic resistance in Yersiniae. J. Bacteriol. 179, 612–619 (1997).

    Google Scholar 

  47. Li, X. & Krumholz, L. R. Regulation of arsenate resistance in Desulfovibrio desulfuricans G20 by an arsRBCC operon and an arsC gene. J. Bacteriol. 189, 3705–3711 (2007).

    Google Scholar 

Download references