Genomic discrimination of the botanical groups conilon and robusta of Coffea canephora

genomic-discrimination-of-the-botanical-groups-conilon-and-robusta-of-coffea-canephora
Genomic discrimination of the botanical groups conilon and robusta of Coffea canephora

References

  1. Ferrão, M. A. G., Ferrão, R. G., Fonseca, A. F. A., da Verdin Filho, A. C. & Volpi, P. S. Origin, geographical dispersion, taxonomy and genetic diversity of Coffea canephora. In Conilon Coffee (eds. Ferrão, R. G., Fonseca, A. F. A. da, Ferrão, M. A. G. & de Muner, L. H.) 85–110 (Incaper, 2019).

  2. Alkimim, E. R. et al. High-throughput targeted genotyping using next-generation sequencing applied in Coffea canephora breeding. Euphytica 214, 50. https://doi.org/10.1007/s10681-018-2126-2 (2018).

    Google Scholar 

  3. Montagnon, C., Cubry, P. & Leroy, T. Amélioration génétique du caféier Coffea canephora pierre: connaissances acquises, stratégies et perspectives. Cah Agric. 21, 143–153. https://doi.org/10.1684/agr.2012.0556 (2012).

    Google Scholar 

  4. Oliveira, L. N. L. D. et al. Selection of Coffea canephora parents from the botanical varieties Conilon and robusta for the production of intervarietal hybrids. Ciênc Rural. 48, e20170444. https://doi.org/10.1590/0103-8478cr20170444 (2018).

    Google Scholar 

  5. Santos, A. V. et al. Reaction of Coffea canephora clones to the root knot nematode, Meloidogyne incognita. Afr. J. Agric. Res. 12, 916–922. https://doi.org/10.5897/AJAR2016.11999 (2017).

    Google Scholar 

  6. Akpertey, A., Padi, F. K., Meinhardt, L. & Zhang, D. Effectiveness of single nucleotide polymorphism markers in genotyping germplasm collections of Coffea canephora using KASP assay. Front. Plant. Sci. 11, 612593. https://doi.org/10.3389/fpls.2020.612593 (2021).

    Google Scholar 

  7. Leroy, T. et al. Genetics of coffee quality. Braz J. Plant. Physiol. 18, 229–242. https://doi.org/10.1590/S1677-04202006000100016 (2006).

    Google Scholar 

  8. Moraes, M. S. et al. Characterization of gametophytic self-incompatibility of superior clones of Coffea canephora. Genet. Mol. Res. 17, gmr16039876. https://doi.org/10.4238/gmr16039876 (2018).

    Google Scholar 

  9. Espindula, M. C., de Araújo, L. F. B., Schmidt, R., Dias, J. R. M. & Rocha, R. B. Early induction of orthotropic shoots in Coffea canephora. Rev. Ceres. 67, 281–287. https://doi.org/10.1590/0034-737X202067040005 (2020).

    Google Scholar 

  10. Ferrão, M. A. G. et al. Incaper,. Variabilidade de Coffea canephora do banco ativo de germoplasma do Incaper: caracterização dos acessos com base em descritores mínimos. Circular Técnica n. 08-I (2022).

  11. Silva, L. F. Estrutura populacional e diversidade genética de Coffea canephora detectadas por marcadores moleculares. Doctoral thesis. (Universidade Federal de Viçosa, 2022).

  12. Ferrão, R. G. et al. Cultivares de cafés Conilon e robusta. Inf. Agropec. 41, 17–25 (2020).

    Google Scholar 

  13. Berthaud, J. Les ressources génétiques pour l’amélioration des caféiers africains diploïdes: évaluation de la richesse génétique des populations sylvestres et de ses mécanismes organisateurs. Conséquences pour l’application. PhD thesis, (Université de Paris, 1984).

  14. Cubry, P. et al. Diversity in coffee assessed with SSR markers: structure of the genus Coffea and perspectives for breeding. Genome 51, 50–63. https://doi.org/10.1139/G07-096 (2008).

    Google Scholar 

  15. Montagnon, C., Leroy, T. & Eskes, A. B. Amélioration variétale de Coffea canephora; 1: critères et méthodes de sélection. Plant. Rech Dév. 5, 18–33 (1998).

    Google Scholar 

  16. Musoli, P. et al. Genetic differentiation of wild and cultivated populations: diversity of Coffea canephora Pierre in Uganda. Genome 52, 634–646. https://doi.org/10.1139/G09-037 (2009).

    Google Scholar 

  17. Merot-L’anthoene, V. et al. Development and evaluation of a genome-wide coffee 8.5K SNP array and its application for high-density genetic mapping and for investigating the origin of Coffea Arabica L. Plant. Biotechnol. J. 17, 1418–1430. https://doi.org/10.1111/pbi.13066 (2019).

    Google Scholar 

  18. CONAB. Acompanhamento da safra brasileira de café – Safra 2024. CONAB (2024).

  19. Ferrão, M. A. G. et al. Characterization and genetic diversity of Coffea canephora accessions in a germplasm bank in Espírito Santo, Brazil. Crop Breed. Appl. Biotechnol. 21, e36132123. https://doi.org/10.1590/1984-70332021v21n2a32 (2021).

    Google Scholar 

  20. Brasil Secretaria de Apoio Rural e Cooperativismo. Serviço Nacional de Proteção de Cultivares. Portaria n. 2, de 17 de novembro de 2000. Diário Oficial da República Federativa do Brasil (Brasília, DF), 6–7 (2000).

  21. Jamali, S. H., Cockram, J. & Hickey, L. T. Insights into deployment of DNA markers in plant variety protection and registration. Theor. Appl. Genet. 132, 1911–1929. https://doi.org/10.1007/s00122-019-03348-7 (2019).

    Google Scholar 

  22. Bikila, B. A., Sakiyama, N. S. & Caixeta, E. T. SNPs based molecular diversity of Coffea canephora. J. Microbiol. Exp. 5, 00136. https://doi.org/10.15406/jmen.2017.05.00136 (2017).

    Google Scholar 

  23. Garavito, A., Montagnon, C., Guyot, R. & Bertrand, B. Identification by the DArTseq method of the genetic origin of Coffea canephora cultivated in Vietnam and Mexico. BMC Plant. Biol. 16, 242. https://doi.org/10.1186/s12870-016-0933-y (2016).

    Google Scholar 

  24. Spinoso-Castillo, J. L. et al. Genetic diversity of coffee (Coffea spp.) in Mexico evaluated by using DArTseq and SNP markers. Genet. Resour. Crop Evol. 67, 2385–2400. https://doi.org/10.1007/s10722-020-00940-5 (2020).

    Google Scholar 

  25. Zaidan, I. R. et al. Diversity and structure of Coffea canephora from old seminal crops in Espírito Santo, brazil: genetic resources for coffee breeding. Tree Genet. Genomes. 19, 1. https://doi.org/10.1007/s11295-023-01594-x (2023).

    Google Scholar 

  26. Doyle, J. J. & Doyle, J. L. Isolation of plant DNA from fresh tissue. Focus 12, 13–15 (1990).

    Google Scholar 

  27. Kilian, A. et al. Humana Press,. Diversity arrays technology: a generic genome profiling technology on open platforms. In Data Production and Analysis in Population Genomics (eds. Pompanon, F. & Bonin, A.) Methods Mol. Biol. 888, 67–89 https://doi.org/10.1007/978-1-61779-870-2_5 (2012).

  28. Sansaloni, C. et al. Diversity analysis of 80,000 wheat accessions reveals consequences and opportunities of selection footprints. Nat. Commun. 11, 4572. https://doi.org/10.1038/s41467-020-18404-w (2020).

    Google Scholar 

  29. Gruber, B., Unmack, P. J., Berry, O. F. & Georges, A. Dartr: an R package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol. Ecol. Resour. 18, 691–699. https://doi.org/10.1111/1755-0998.12745 (2018).

    Google Scholar 

  30. R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing. https://doi.org/10.32614/R.manuals (2022).

  31. Denoeud, F. et al. The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345, 1181–1184. https://doi.org/10.1126/science.1255274 (2014).

    Google Scholar 

  32. Yin, L. et al. CMplot: circle Manhattan plot. R package version 4.5.1 (2021).

  33. Rousset, F. Genepop’007: a complete re-implementation of the Genepop software for windows and Linux. Mol. Ecol. Resour. 8, 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x (2008).

    Google Scholar 

  34. Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281. https://doi.org/10.7717/peerj.281 (2014).

    Google Scholar 

  35. Frichot, E. & François, O. LEA: an R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929. https://doi.org/10.1111/2041-210X.12382 (2015).

    Google Scholar 

  36. Graffelman, J. & Weir, B. S. Testing for Hardy-Weinberg equilibrium at bi-allelic genetic markers on the X chromosome. Heredity 116, 558–568. https://doi.org/10.1038/hdy.2016.20 (2016).

    Google Scholar 

  37. Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491. https://doi.org/10.1093/genetics/131.2.479 (1992).

    Google Scholar 

  38. Goudet, J. HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes. 5, 184–186. https://doi.org/10.1111/j.1471-8286.2004.00828.x (2005).

    Google Scholar 

  39. Kolde, R. Pheatmap: pretty heatmaps. R Package Version 1 0 12. https://doi.org/10.32614/CRAN.package.pheatmap (2019).

    Google Scholar 

  40. Chao, J. T. et al. MapGene2Chrom, a tool to draw gene physical map based on Perl and SVG languages. Yi Chuan. 37, 91–97. https://doi.org/10.16288/j.yczz.2015.01.013 (2015).

    Google Scholar 

  41. Souza, F. F. et al. Molecular diversity in Coffea canephora germplasm conserved and cultivated in Brazil. Crop Breed. Appl. Biotechnol. 13, 221–227. https://doi.org/10.1590/S1984-70332013000400001 (2013).

    Google Scholar 

  42. Sousa, P. et al. Coffea canephora: heterotic crosses indicated by molecular approach. Plants 11, 3023. https://doi.org/10.3390/plants11223023 (2022).

    Google Scholar 

  43. Vi, T. et al. Genome-wide admixture mapping identifies wild ancestry-of-origin segments in cultivated robusta coffee. Genome Biol. Evol. 15, evad065. https://doi.org/10.1093/gbe/evad065 (2023).

    Google Scholar 

  44. Anagbogu, C. F. et al. Genetic diversity and re-classification of coffee (Coffea canephora Pierre ex A. Froehner) from South Western Nigeria through genotyping-by-sequencing–single nucleotide polymorphism analysis. Genet. Resour. Crop Evol. 66, 685–696. https://doi.org/10.1007/s10722-019-00744-2 (2019).

    Google Scholar 

  45. Depecker, J. et al. Genetic diversity and structure in wild robusta coffee (Coffea canephora A. Froehner) populations in Yangambi (DR Congo) and their relation to forest disturbance. Heredity 130, 145–153. https://doi.org/10.1038/s41437-022-00588-0 (2023).

    Google Scholar 

  46. Motta, L. B. et al. Transferability of microsatellite loci in Coffea canephora. Aust J. Crop Sci. 8, 987–991 (2014).

    Google Scholar 

  47. Moura, T. M. et al. Diversidade e estrutura genética espacial Em populações fragmentadas de Solanum spp. Do Cerrado, estimadas Por Meio de locos microssatélites. Sci. For. 37, 143–150 (2009).

    Google Scholar 

  48. Verleysen, L. et al. Crop-to-wild gene flow in wild coffee species: the case of Coffea canephora in the Democratic Republic of the congo. Ann. Bot. 133, 917–930. https://doi.org/10.1093/aob/mcae034 (2024).

    Google Scholar 

  49. Souza, L. C. et al. Molecular characterization of parents and hybrid progenies of Conilon coffee. Acad. Bras. Cienc. 93, e20201649. https://doi.org/10.1590/0001-3765202120201649 (2021).

    Google Scholar 

  50. Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 (2012).

    Google Scholar 

  51. Mateu-Andrés, I. & de Paco, L. Genetic diversity and the reproductive system in related species of Antirrhinum. Ann. Bot. 98, 1053–1060. https://doi.org/10.1093/aob/mcl186 (2006).

    Google Scholar 

  52. Silvestrini, M. et al. Genetic diversity of a Coffea germplasm collection assessed by RAPD markers. Genet. Resour. Crop Evol. 55, 901–910. https://doi.org/10.1007/s10722-007-9295-5 (2008).

    Google Scholar 

  53. Ferrão, L. F. V. et al. Comparative study of different molecular markers for classifying and Establishing genetic relationships in Coffea canephora. Plant. Syst. Evol. 299, 225–238. https://doi.org/10.1007/s00606-012-0717-2 (2013).

    Google Scholar 

  54. Prakash, N. S., Combes, M. C., Dussert, S., Naveen, S. & Lashermes, P. Analysis of genetic diversity in Indian robusta coffee genepool (Coffea canephora) in comparison with a representative core collection using SSRs and AFLPs. Genet. Resour. Crop Evol. 52, 333–343. https://doi.org/10.1007/s10722-003-2125-5 (2005).

    Google Scholar 

Download references