References
-
Bukhat, S. et al. Communication of plants with microbial world: exploring the regulatory networks for PGPR mediated defense signaling. Microbiol. Res. 238, 126486 (2020).
-
Mahmud, K., Makaju, S., Ibrahim, R. & Missaoui, A. Current progress in nitrogen fixing plants and Microbiome research. Plants 9, 97 (2020).
-
Wang, Z. et al. Screening of phosphate-solubilizing bacteria and their abilities of phosphorus solubilization and wheat growth promotion. BMC Microbiol. 22, 296 (2022).
-
Timofeeva, A., Galyamova, M. & Sedykh, S. Prospects for using phosphate-solubilizing microorganisms as natural fertilizers in agriculture. Plants 11, 2119 (2022).
-
Ma, Y., Oliveira, R. S., Freitas, H. & Zhang, C. Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Front. Plant. Sci. 7, 918 (2016).
-
Zahir, Z. A., Shah, M. K., Naveed, M. & Akhter, M. J. Substrate-dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vigna radiata L. under salt stress conditions. J. Microbiol. Biotechnol. 20, 1288–1294 (2010).
-
Singh, R. P., Shelke, G. M., Kumar, A. & Jha, P. N. Corrigendum: Biochemistry and genetics of ACC deaminase: a weapon to stress ethylene produced in plants. Front. Microbiol. 6, 1255 (2015).
-
Mansour, E. et al. Enhancement of drought tolerance in diverse Vicia Faba cultivars by inoculation with plant growth-promoting rhizobacteria under newly reclaimed soil conditions. Sci. Rep. 11, 24142 (2021).
-
Ho, Y. N. et al. Specific inactivation of an antifungal bacterial siderophore by a fungal plant pathogen. ISME J. 15, 1858–1861. https://doi.org/10.1038/s41396-020-00871-0 (2021).
-
Hosseini, A., Hosseini, M. & Schausberger, P. Plant growth-promoting rhizobacteria enhance defense of strawberry plants against spider mites. Front. Plant. Sci. 12, 783578 (2022).
-
Ghazy, N. & El-Nahrawy, S. Siderophore production by Bacillus subtilis MF497446 and Pseudomonas Koreensis MG209738 and their efficacy in controlling Cephalosporium Maydis in maize plant. Arch. Microbiol. 203, 1195–1209 (2021).
-
Timofeeva, A. M., Galyamova, M. R. & Sedykh, S. E. Bacterial siderophores: Classification, biosynthesis, perspectives of use in agriculture. Plants 11, 3065 (2022).
-
Karuppiah, V. et al. Development of siderophore-based rhizobacterial consortium for the mitigation of biotic and abiotic environmental stresses in tomatoes: an in vitro and in planta approach. J. Appl. Microbiol. 133, 3276–3287 (2022).
-
Lahlali, R. et al. Biological control of plant pathogens: A global perspective. Microorganisms 10, 596 (2022).
-
Wang, D. et al. Insights into the biocontrol function of a Burkholderia gladioli strain against Botrytis cinerea. Microbiol. Spectr. 11, e0480522 (2023).
-
Antagonism, C. M. PATHOGEN SELF-DEFENSE: mechanisms to. Annu. Rev. Phytopathol. 41, 501–538 (2003).
-
Buysens, S., Heungens, K., Poppe, J. & Hofte, M. Involvement of Pyochelin and pyoverdin in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl. Environ. Microbiol. 62, 865–871 (1996).
-
Scavino, A. F. & Pedraza, R. O. The role of siderophores in plant growth-promoting bacteria. Bact Agrobiol Crop Product. Springer; pp. 265–285. (2013).
-
Louden, B. C., Haarmann, D. & Lynne, A. M. Use of blue agar CAS assay for siderophore detection. J. Microbiol. Biol. Educ. 12, 51–53 (2011).
-
Sharma, P. & Thakur, D. Antimicrobial biosynthetic potential and diversity of culturable soil actinobacteria from forest ecosystems of Northeast India. Sci. Rep. 10, 4104 (2020).
-
Wahab, A. et al. Plant growth-promoting rhizobacteria biochemical pathways and their environmental impact: a review of sustainable farming practices. Plant. Growth Regul. 104, 637–662. https://doi.org/10.1007/s10725-024-01218-x (2024).
-
Depoorter, E. et al. Burkholderia: an update on taxonomy and biotechnological potential as antibiotic producers. Appl. Microbiol. Biotechnol. 100, 5215–5229. https://doi.org/10.1007/s00253-016-7520-x (2016).
-
Compant, S., Nowak, J., Coenye, T., Clement, C. & Ait Barka, E. Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiol. Rev. 32, 607–626 (2008).
-
Caballero-Mellado, J., Onofre-Lemus, J., Estrada-de Los Santos, P. & Martínez-Aguilar, L. The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl. Environ. Microbiol. 73, 5308–5319 (2007).
-
Pal, G. et al. Endophytic Burkholderia: multifunctional roles in plant growth promotion and stress tolerance. Microbiol. Res. 265, 127201 (2022).
-
Mahenthiralingam, E., Baldwin, A. & Dowson, C. G. Burkholderia Cepacia complex bacteria: opportunistic pathogens with important natural biology. J. Appl. Microbiol. 104, 1539–1551 (2008).
-
Vial, L., Chapalain, A., Groleau, M. & Déziel, E. The various lifestyles of the Burkholderia Cepacia complex species: a tribute to adaptation. Environ. Microbiol. 13, 1–12 (2011).
-
Foxfire, A., Buhrow, A. R., Orugunty, R. S. & Smith, L. Drug discovery through the isolation of natural products from Burkholderia. Expert Opin. Drug Discov. 16, 807–822.https://doi.org/10.1080/17460441.2021.1877655 (2021).
-
Krishnan, R., Lang, E., Midha, S., Patil, P. B. & Rameshkumar, N. Isolation and characterization of a novel 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing plant growth promoting marine Gammaproteobacteria from crops grown in brackish environments. Proposal for Pokkaliibacter plantistimulans gen. nov., sp. n. Syst. Appl. Microbiol. 41, 570–580 (2018).
-
Zimin, A. V. et al. The MaSuRCA genome assembler. Bioinformatics 29, 2669–2677 (2013).
-
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).
-
Aziz, R. K. et al. The RAST server: rapid annotations using subsystems technology. BMC Genom. 9, 75 (2008).
-
Grant, J. R. et al. Proksee: in-depth characterization and visualization of bacterial genomes. Nucleic Acids Res. 51,, W484–492. https://doi.org/10.1093/nar/gkad326 (2023).
-
Tatusova, T. et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44, 6614–6624 (2016).
-
Bertelli, C. et al. IslandViewer 4: expanded prediction of genomic Islands for larger-scale datasets. Nucleic Acids Res. 45, W30–35 (2017).
-
Meier-Kolthoff, J. P. & Göker, M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 10, 2182 (2019).
-
Richter, M., Rosselló-Móra, R., Oliver Glöckner, F. & Peplies, J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32, 929–931 (2016).
-
Rodriguez-R, L. M. & Konstantinidis, K. T. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints ; (2016).
-
Meier-Kolthoff, J. P., Auch, A. F., Klenk, H. P. & Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 14, 1–14 (2013).
-
Sun, J. et al. OrthoVenn3: an integrated platform for exploring and visualizing orthologous data across genomes. Nucleic Acids Res. 51, W397–403 (2023).
-
Patz, S. et al. PLaBAse: A comprehensive web resource for analyzing the plant growth-promoting potential of plant-associated bacteria. BioRxiv ;2012–2021. (2021).
-
Medema, M. H. et al. AntiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 39, W339–346. https://doi.org/10.1093/nar/gkr466 (2011).
-
Alam, K. et al. Isolation, complete genome sequencing and in Silico genome mining of Burkholderia for secondary metabolites. BMC Microbiol. 22, 323 (2022).
-
Blum, M. et al. InterPro: the protein sequence classification resource in 2025 mode longmeta? Nucleic Acids Res. 53, D444–D456 (2025).
-
van Heel, A. J. et al. BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res. 46, W278–W281 (2018).
-
Ziemert, N. et al. The natural product domain seeker napdos: a phylogeny based bioinformatic tool to classify secondary metabolite gene diversity. PLoS One. 7, e34064 (2012).
-
Sundararao, W. V. B. Phosphate dissolving organisms in the soil and rhizosphere. Ind. Jour Agr Sci. 33, 272–278 (1963).
-
Penrose, D. M. & Glick, B. R. Methods for isolating and characterizing ACC deaminase-containing plant growth‐promoting rhizobacteria. Physiol. Plant. 118, 10–15 (2003).
-
Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).
-
Schwyn, B. & Neilands, J. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160, 47–56 (1987).
-
Arora, N. K. & Verma, M. Modified microplate method for rapid and efficient Estimation of siderophore produced by bacteria. 3 Biotech. 7, 381 (2017).
-
Oldenburg, K. R., Vo, K. T., Ruhland, B., Schatz, P. J. & Yuan, Z. A dual culture assay for detection of antimicrobial activity. J. Biomol. Screen. 1, 123–130. https://doi.org/10.1177/108705719600100305 (1996).
-
Kamat, N. & Velho-Pereira, S. Screening of actinobacteria for antimicrobial activities by a modified Cross-Streak method. Nat. Preced. https://doi.org/10.1038/npre.2012.6765.1 (2012).
-
Magaldi, S. et al. Well diffusion for antifungal susceptibility testing. Int. J. Infect. Dis. 8, 39–45 (2004). https://www.sciencedirect.com/science/article/pii/S1201971203000067
-
Chevrette, M. G. et al. The antimicrobial potential of Streptomyces from insect microbiomes. Nat. Commun. 10, 516. https://doi.org/10.1038/s41467-019-08438-0 (2019).
-
Bach, E., Volpiano, C. G., Sant’anna, F. H. & Passaglia, L. M. P. Genome-based taxonomy of Burkholderia sensu lato: distinguishing closely related species. Genet. Mol. Biol. 46, 1–13 (2023).
-
Kunakom, S. & Eustáquio, A. S. Burkholderia as a source of natural products. J. Nat. Prod. 82, 2018–2037 (2019).
-
El-Banna & Winkelmann Pyrrolnitrin from Burkholderia cepacia: antibiotic activity against fungi and novel activities against streptomycetes. J. Appl. Microbiol. 85, 69–78. https://doi.org/10.1046/j.1365-2672.1998.00473.x (1998).
-
Pawar, S., Chaudhari, A., Prabha, R., Shukla, R. & Singh, D. P. Microbial pyrrolnitrin: natural metabolite with immense practical utility. Biomolecules (2019).
-
Ellermann, M. & Arthur, J. C. Siderophore-mediated iron acquisition and modulation of host-bacterial interactions. Free Radic Biol. Med. 105, 68–78 (2017).
-
Kloepper, J. W., Leong, J., Teintze, M. & Schroth, M. N. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286, 885–886 (1980).
-
Ahmed, E. & Holmström, S. J. M. Siderophores in environmental research: roles and applications. Microb. Biotechnol. 7, 196–208 (2014).
-
Miethke, M. & Marahiel, M. A. Siderophore-based iron acquisition and pathogen control. Microbiol. Mol. Biol. Rev. 71, 413–451. https://doi.org/10.1128/mmbr.00012-07 (2007).
-
Sandy, M. & Butler, A. Microbial iron acquisition: marine and terrestrial siderophores. Chem. Rev. 109, 4580–4595. https://doi.org/10.1021/cr9002787 (2009).
-
Neiendam, N. M., Jan, S., Johannes, F. & Christian, P. H. Secondary metabolite- and endochitinase-dependent antagonism toward plant-pathogenic microfungi of Pseudomonas fluorescens isolatesfrom sugar beet rhizosphere. Appl. Environ. Microbiol. 64, 3563–3569. https://doi.org/10.1128/AEM.64.10.3563-3569.1998 (1998).
-
Nagarajkumar, M., Bhaskaran, R. & Velazhahan, R. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in Inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiol. Res. 159, 73–81 (2004). https://www.sciencedirect.com/science/article/pii/S0944501304000072
-
Hu, J., Wang, Z. & Xu, W. Production-optimized fermentation of antifungal compounds by Bacillus velezensis LZN01 and transcriptome analysis. Microb. Biotechnol. 17, e70026. https://doi.org/10.1111/1751-7915.70026 (2024).
-
Hill, D. S. et al. Cloning of genes involved in the synthesis of Pyrrolnitrin from Pseudomonas fluorescens and role of Pyrrolnitrin synthesis in biological control of plant disease. Appl. Environ. Microbiol. 60, 78–85 (1994).
-
Hwang, J., Chilton, W. S. & Benson, D. M. Pyrrolnitrin production by Burkholderia Cepacia and biocontrol of Rhizoctonia stem rot of poinsettia. Biol. Control. 25, 56–63 (2002). https://www.sciencedirect.com/science/article/pii/S1049964402000440
-
Gondry, M. et al. Cyclodipeptide synthases are a family of tRNA-dependent peptide bond–forming enzymes. Nat. Chem. Biol. 5, 414–420 (2009).
-
Kumar, N., Mohandas, C., Nambisan, B., Kumar, D. R. S. & Lankalapalli, R. S. Isolation of proline-based cyclic dipeptides from Bacillus sp. N strain associated with rhabitid entomopathogenic nematode and its antimicrobial properties. World J. Microbiol. Biotechnol. 29, 355–364 (2013).
-
Canu, N., Moutiez, M., Belin, P. & Gondry, M. Cyclodipeptide synthases: a promising biotechnological tool for the synthesis of diverse 2, 5-diketopiperazines. Nat. Prod. Rep. 37, 312–321 (2020).
-
Maiti, P. K. & Mandal, S. Comprehensive genome analysis of Lentzea reveals repertoire of polymer-degrading enzymes and bioactive compounds with clinical relevance. Sci. Rep. 12, 8409. https://doi.org/10.1038/s41598-022-12427-7 (2022).
-
Yan, D. et al. Discovering type I cis-AT polyketides through computational mass spectrometry and genome mining with Seq2PKS. Nat. Commun. 15, 5356. https://doi.org/10.1038/s41467-024-49587-1 (2024).
-
Paysan-Lafosse, T. et al. The Pfam protein families database: embracing AI/ML. Nucleic Acids Res. 53,, D523–534. https://doi.org/10.1093/nar/gkae997 (2025).
-
Jahns, C. et al. Pellasoren: structure elucidation, biosynthesis, and total synthesis of a cytotoxic secondary metabolite from Sorangium cellulosum. Angew Chemie Int. Ed. 51, 5239–5243. https://doi.org/10.1002/anie.201200327 (2012).
-
Zhou, L., Song, C., Li, Z. & Kuipers, O. P. Antimicrobial activity screening of rhizosphere soil bacteria from tomato and genome-based analysis of their antimicrobial biosynthetic potential. BMC Genom. 22, 29. https://doi.org/10.1186/s12864-020-07346-8 (2021).
-
Sunithakumari, V. S., Menon, R. R., Suresh, G. G., Krishnan, R. & Rameshkumar, N. Characterization of a novel root-associated diazotrophic rare PGPR taxa, Aquabacter pokkalii sp. nov, isolated from pokkali rice: new insights into the plant-associated lifestyle and brackish adaptation. BMC Genom. 25, 424 (2024).
-
Babu-Khan, S. et al. Cloning of a mineral phosphate-solubilizing gene from Pseudomonas Cepacia. Appl. Environ. Microbiol. 61, 972–978. https://doi.org/10.1128/aem.61.3.972-978.1995 (1995).
-
Buch, A. D., Archana, G. & Kumar, G. N. Enhanced citric acid biosynthesis in Pseudomonas fluorescens ATCC 13525 by overexpression of the Escherichia coli citrate synthase gene. Microbiology 155, 2620–2629 (2009).
-
Gardner, S. G., Johns, K. D., Tanner, R. & McCleary, W. R. The PhoU protein from Escherichia coli interacts with PhoR, PstB, and metals to form a phosphate-signaling complex at the membrane. J. Bacteriol. 196, 1741–1752. https://doi.org/10.1128/jb.00029-14 (2014).
-
Gupta, S. & Pandey, S. ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Front. Microbiol. 10, 1506. https://doi.org/10.3389/fmicb.2019.01506 (2019). https://www.frontiersin.org/journals/microbiology/articles/
-
Li, B. et al. Exogenous spermidine inhibits ethylene production in leaves of cucumber seedlings under NaCl stress. J. Am. Soc. Hortic. Sci. J. Amer Soc. Hort Sci. 138, 108–113 (2013).https://journals.ashs.org/jashs/view/journals/jashs/138/2/article-p108.xml
-
Xie, S. S. et al. Plant growth promotion by spermidine-producing Bacillus subtilis OKB105. Mol. Plant-Microbe Interact. 27, 655–663. https://doi.org/10.1094/MPMI-01-14-0010-R (2014).
-
Tang, J. et al. Biosynthetic pathways and functions of indole-3-acetic acid in microorganisms. Microorganisms (2023).
-
Klessig, D. F., Choi, H. W. & Dempsey, D. A. Systemic acquired resistance and Salicylic acid: past, present, and future. Mol. Plant-Microbe Interact. 31, 871–888. https://doi.org/10.1094/MPMI-03-18-0067-CR (2018).
-
Ryu, C. M. et al. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. 100, 4927–4932. https://doi.org/10.1073/pnas.0730845100 (2003).
-
Ramos, J. L. et al. Responses of Gram-negative bacteria to certain environmental stressors. Curr. Opin. Microbiol. 4, 166–171 (2001). https://www.sciencedirect.com/science/article/pii/S1369527400001831
-
Jenal, U., Reinders, A. & Lori, C. Cyclic di-GMP: second messenger extraordinaire. Nat. Rev. Microbiol. 15, 271–284. https://doi.org/10.1038/nrmicro.2016.190 (2017).
-
Dekkers, L. C. et al. Role of the O-Antigen of lipopolysaccharide, and possible roles of growth rate and of NADH: ubiquinone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365. Mol. Plant-Microbe Interact. 11, 763–771. https://doi.org/10.1094/MPMI.1998.11.8.763 (1998).
-
Salah Ud-Din, A. I. M. & Roujeinikova, A. Methyl-accepting chemotaxis proteins: a core sensing element in prokaryotes and archaea. Cell. Mol. Life Sci. 74, 3293–3303. https://doi.org/10.1007/s00018-017-2514-0 (2017).
-
Wall, D. & Kaiser, D. Type IV pili and cell motility. Mol. Microbiol. 32, 1–10. https://doi.org/10.1046/j.1365-2958.1999.01339.x (1999).
-
Abidi, W., Torres-Sánchez, L., Siroy, A. & Krasteva, P. V. Weaving of bacterial cellulose by the Bcs secretion systems. FEMS Microbiol. Rev (2022).
-
Hernández-Arriaga, A. M. et al. Genome sequence and characterization of the Bcs clusters for the production of nanocellulose from the low pH resistant strain Komagataeibacter medellinensis ID13488. Microb. Biotechnol. 12, 620–632. https://doi.org/10.1111/1751-7915.13376 (2019).
-
Dias, G. M. et al. Comparative genomics of Paraburkholderia kururiensis and its potential inbioremediation, biofertilization, and biocontrol of plant pathogens. Microbiologyopen 8e00801. https://doi.org/10.1002/mbo3.801 (2019).
-
Lugtenberg, B. J. J., Dekkers, L. & Bloemberg, G. V. Molecular determinants of rhizosphere colonization by Pseudomonas. Annu. Rev. Phytopathol. 39, 461–490 (2001). https://www.annualreviews.org/content/journals/10.1146/annurev.phyto.39.1.461
-
Sultana, S., Alam, S. & Karim, M. M. Screening of siderophore-producing salt-tolerant rhizobacteria suitable for supporting plant growth in saline soils with iron limitation. J. Agric. Food Res. 4, 100150 (2021). https://www.sciencedirect.com/science/article/pii/S2666154321000521
-
Cornelis, P. & Matthijs, S. Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ. Microbiol. 4, 787–798. https://doi.org/10.1046/j.1462-2920.2002.00369.x (2002).
-
Kertesz, M. A. Riding the sulfur cycle – metabolism of sulfonates and sulfate esters in Gram-negative bacteria. FEMS Microbiol. Rev. 24, 135–175. https://doi.org/10.1016/S0168-6445(99)00033-9 (2000).
-
Khan, N. et al. Insights into the interactions among roots, rhizosphere, and rhizobacteria for improving plant growth and tolerance to abiotic stresses: a review. Cells (2021).
-
Ali, S., Tyagi, A. & Bae, H. ROS interplay between plant growth and stress biology: challenges and future perspectives. Plant. Physiol. Biochem. 203, 108032 (2023). https://www.sciencedirect.com/science/article/pii/S0981942823005430
-
Ballal, A., Basu, B. & Apte, S. K. The Kdp-ATPase system and its regulation. J. Biosci. 32, 559–568. https://doi.org/10.1007/s12038-007-0055-7 (2007).
-
Richter, M. & Rosselló-Móra, R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. 106, 19126–19131. https://doi.org/10.1073/pnas.0906412106 (2009).
-
Rodriguez-R, L. M. et al. An ANI gap within bacterial species that advances the definitions of intra-species units. MBio 15, e02696–e02623 (2024).
-
Wallner, A., King, E., Ngonkeu, E. L. M., Moulin, L. & Béna, G. Genomic analyses of Burkholderia cenocepacia reveal multiple species with differential host-adaptation to plants and humans. BMC Genom. 20, 803. https://doi.org/10.1186/s12864-019-6186-z (2019).
-
Deng, P. et al. Comparative genome-wide analysis reveals that Burkholderia contaminans MS14 possesses multiple antimicrobial biosynthesis genes but not major genetic loci required for pathogenesis. Microbiologyopen 5, 353–369. https://doi.org/10.1002/mbo3.333 (2016).
-
Sandra, S. et al. VgrG-5 is a Burkholderia type VI secretion system-exported protein required for multinucleated giant cell formation and virulence. Infect. Immun. 82, 1445–1452. https://doi.org/10.1128/iai.01368-13 (2014).
-
Guo, F. B. et al. Identification and analysis of genomic Islands in Burkholderia cenocepacia AU 1054 with emphasis on pathogenicity Islands. BMC Microbiol. 17, 73. https://doi.org/10.1186/s12866-017-0986-6 (2017).
-
Sim, S. H. et al. The core and accessory genomes of Burkholderia pseudomallei: implications for human melioidosis. PLoS Pathog. 4, e1000178 (2008).
-
Bhat, A. et al. Role of transposable elements in genome stability: implications for health and disease. Int. J. Mol. Sci. 23, 7802 (2022).
