Genomic insights into novelBurkholderia sp. Bmkn7 from coastal saline-affected rice fields unveils potential antimicrobial metabolites and plant growth-promoting traits

genomic-insights-into-novelburkholderia-sp.-bmkn7-from-coastal-saline-affected-rice-fields-unveils-potential-antimicrobial-metabolites-and-plant-growth-promoting-traits
Genomic insights into novelBurkholderia sp. Bmkn7 from coastal saline-affected rice fields unveils potential antimicrobial metabolites and plant growth-promoting traits

References

  1. Bukhat, S. et al. Communication of plants with microbial world: exploring the regulatory networks for PGPR mediated defense signaling. Microbiol. Res. 238, 126486 (2020).

    Google Scholar 

  2. Mahmud, K., Makaju, S., Ibrahim, R. & Missaoui, A. Current progress in nitrogen fixing plants and Microbiome research. Plants 9, 97 (2020).

    Google Scholar 

  3. Wang, Z. et al. Screening of phosphate-solubilizing bacteria and their abilities of phosphorus solubilization and wheat growth promotion. BMC Microbiol. 22, 296 (2022).

    Google Scholar 

  4. Timofeeva, A., Galyamova, M. & Sedykh, S. Prospects for using phosphate-solubilizing microorganisms as natural fertilizers in agriculture. Plants 11, 2119 (2022).

    Google Scholar 

  5. Ma, Y., Oliveira, R. S., Freitas, H. & Zhang, C. Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Front. Plant. Sci. 7, 918 (2016).

    Google Scholar 

  6. Zahir, Z. A., Shah, M. K., Naveed, M. & Akhter, M. J. Substrate-dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vigna radiata L. under salt stress conditions. J. Microbiol. Biotechnol. 20, 1288–1294 (2010).

    Google Scholar 

  7. Singh, R. P., Shelke, G. M., Kumar, A. & Jha, P. N. Corrigendum: Biochemistry and genetics of ACC deaminase: a weapon to stress ethylene produced in plants. Front. Microbiol. 6, 1255 (2015).

    Google Scholar 

  8. Mansour, E. et al. Enhancement of drought tolerance in diverse Vicia Faba cultivars by inoculation with plant growth-promoting rhizobacteria under newly reclaimed soil conditions. Sci. Rep. 11, 24142 (2021).

    Google Scholar 

  9. Ho, Y. N. et al. Specific inactivation of an antifungal bacterial siderophore by a fungal plant pathogen. ISME J. 15, 1858–1861. https://doi.org/10.1038/s41396-020-00871-0 (2021).

    Google Scholar 

  10. Hosseini, A., Hosseini, M. & Schausberger, P. Plant growth-promoting rhizobacteria enhance defense of strawberry plants against spider mites. Front. Plant. Sci. 12, 783578 (2022).

    Google Scholar 

  11. Ghazy, N. & El-Nahrawy, S. Siderophore production by Bacillus subtilis MF497446 and Pseudomonas Koreensis MG209738 and their efficacy in controlling Cephalosporium Maydis in maize plant. Arch. Microbiol. 203, 1195–1209 (2021).

    Google Scholar 

  12. Timofeeva, A. M., Galyamova, M. R. & Sedykh, S. E. Bacterial siderophores: Classification, biosynthesis, perspectives of use in agriculture. Plants 11, 3065 (2022).

    Google Scholar 

  13. Karuppiah, V. et al. Development of siderophore-based rhizobacterial consortium for the mitigation of biotic and abiotic environmental stresses in tomatoes: an in vitro and in planta approach. J. Appl. Microbiol. 133, 3276–3287 (2022).

    Google Scholar 

  14. Lahlali, R. et al. Biological control of plant pathogens: A global perspective. Microorganisms 10, 596 (2022).

    Google Scholar 

  15. Wang, D. et al. Insights into the biocontrol function of a Burkholderia gladioli strain against Botrytis cinerea. Microbiol. Spectr. 11, e0480522 (2023).

    Google Scholar 

  16. Antagonism, C. M. PATHOGEN SELF-DEFENSE: mechanisms to. Annu. Rev. Phytopathol. 41, 501–538 (2003).

    Google Scholar 

  17. Buysens, S., Heungens, K., Poppe, J. & Hofte, M. Involvement of Pyochelin and pyoverdin in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl. Environ. Microbiol. 62, 865–871 (1996).

    Google Scholar 

  18. Scavino, A. F. & Pedraza, R. O. The role of siderophores in plant growth-promoting bacteria. Bact Agrobiol Crop Product. Springer; pp. 265–285. (2013).

  19. Louden, B. C., Haarmann, D. & Lynne, A. M. Use of blue agar CAS assay for siderophore detection. J. Microbiol. Biol. Educ. 12, 51–53 (2011).

    Google Scholar 

  20. Sharma, P. & Thakur, D. Antimicrobial biosynthetic potential and diversity of culturable soil actinobacteria from forest ecosystems of Northeast India. Sci. Rep. 10, 4104 (2020).

    Google Scholar 

  21. Wahab, A. et al. Plant growth-promoting rhizobacteria biochemical pathways and their environmental impact: a review of sustainable farming practices. Plant. Growth Regul. 104, 637–662. https://doi.org/10.1007/s10725-024-01218-x (2024).

    Google Scholar 

  22. Depoorter, E. et al. Burkholderia: an update on taxonomy and biotechnological potential as antibiotic producers. Appl. Microbiol. Biotechnol. 100, 5215–5229. https://doi.org/10.1007/s00253-016-7520-x (2016).

    Google Scholar 

  23. Compant, S., Nowak, J., Coenye, T., Clement, C. & Ait Barka, E. Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiol. Rev. 32, 607–626 (2008).

    Google Scholar 

  24. Caballero-Mellado, J., Onofre-Lemus, J., Estrada-de Los Santos, P. & Martínez-Aguilar, L. The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl. Environ. Microbiol. 73, 5308–5319 (2007).

    Google Scholar 

  25. Pal, G. et al. Endophytic Burkholderia: multifunctional roles in plant growth promotion and stress tolerance. Microbiol. Res. 265, 127201 (2022).

    Google Scholar 

  26. Mahenthiralingam, E., Baldwin, A. & Dowson, C. G. Burkholderia Cepacia complex bacteria: opportunistic pathogens with important natural biology. J. Appl. Microbiol. 104, 1539–1551 (2008).

    Google Scholar 

  27. Vial, L., Chapalain, A., Groleau, M. & Déziel, E. The various lifestyles of the Burkholderia Cepacia complex species: a tribute to adaptation. Environ. Microbiol. 13, 1–12 (2011).

    Google Scholar 

  28. Foxfire, A., Buhrow, A. R., Orugunty, R. S. & Smith, L. Drug discovery through the isolation of natural products from Burkholderia. Expert Opin. Drug Discov. 16, 807–822.https://doi.org/10.1080/17460441.2021.1877655 (2021).

    Google Scholar 

  29. Krishnan, R., Lang, E., Midha, S., Patil, P. B. & Rameshkumar, N. Isolation and characterization of a novel 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing plant growth promoting marine Gammaproteobacteria from crops grown in brackish environments. Proposal for Pokkaliibacter plantistimulans gen. nov., sp. n. Syst. Appl. Microbiol. 41, 570–580 (2018).

    Google Scholar 

  30. Zimin, A. V. et al. The MaSuRCA genome assembler. Bioinformatics 29, 2669–2677 (2013).

    Google Scholar 

  31. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    Google Scholar 

  32. Aziz, R. K. et al. The RAST server: rapid annotations using subsystems technology. BMC Genom. 9, 75 (2008).

    Google Scholar 

  33. Grant, J. R. et al. Proksee: in-depth characterization and visualization of bacterial genomes. Nucleic Acids Res. 51,, W484–492. https://doi.org/10.1093/nar/gkad326 (2023).

    Google Scholar 

  34. Tatusova, T. et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44, 6614–6624 (2016).

    Google Scholar 

  35. Bertelli, C. et al. IslandViewer 4: expanded prediction of genomic Islands for larger-scale datasets. Nucleic Acids Res. 45, W30–35 (2017).

    Google Scholar 

  36. Meier-Kolthoff, J. P. & Göker, M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 10, 2182 (2019).

    Google Scholar 

  37. Richter, M., Rosselló-Móra, R., Oliver Glöckner, F. & Peplies, J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32, 929–931 (2016).

    Google Scholar 

  38. Rodriguez-R, L. M. & Konstantinidis, K. T. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints ; (2016).

  39. Meier-Kolthoff, J. P., Auch, A. F., Klenk, H. P. & Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 14, 1–14 (2013).

    Google Scholar 

  40. Sun, J. et al. OrthoVenn3: an integrated platform for exploring and visualizing orthologous data across genomes. Nucleic Acids Res. 51, W397–403 (2023).

    Google Scholar 

  41. Patz, S. et al. PLaBAse: A comprehensive web resource for analyzing the plant growth-promoting potential of plant-associated bacteria. BioRxiv ;2012–2021. (2021).

  42. Medema, M. H. et al. AntiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 39, W339–346. https://doi.org/10.1093/nar/gkr466 (2011).

    Google Scholar 

  43. Alam, K. et al. Isolation, complete genome sequencing and in Silico genome mining of Burkholderia for secondary metabolites. BMC Microbiol. 22, 323 (2022).

    Google Scholar 

  44. Blum, M. et al. InterPro: the protein sequence classification resource in 2025 mode longmeta? Nucleic Acids Res. 53, D444–D456 (2025).

    Google Scholar 

  45. van Heel, A. J. et al. BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res. 46, W278–W281 (2018).

    Google Scholar 

  46. Ziemert, N. et al. The natural product domain seeker napdos: a phylogeny based bioinformatic tool to classify secondary metabolite gene diversity. PLoS One. 7, e34064 (2012).

    Google Scholar 

  47. Sundararao, W. V. B. Phosphate dissolving organisms in the soil and rhizosphere. Ind. Jour Agr Sci. 33, 272–278 (1963).

    Google Scholar 

  48. Penrose, D. M. & Glick, B. R. Methods for isolating and characterizing ACC deaminase-containing plant growth‐promoting rhizobacteria. Physiol. Plant. 118, 10–15 (2003).

    Google Scholar 

  49. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Google Scholar 

  50. Schwyn, B. & Neilands, J. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160, 47–56 (1987).

    Google Scholar 

  51. Arora, N. K. & Verma, M. Modified microplate method for rapid and efficient Estimation of siderophore produced by bacteria. 3 Biotech. 7, 381 (2017).

    Google Scholar 

  52. Oldenburg, K. R., Vo, K. T., Ruhland, B., Schatz, P. J. & Yuan, Z. A dual culture assay for detection of antimicrobial activity. J. Biomol. Screen. 1, 123–130. https://doi.org/10.1177/108705719600100305 (1996).

    Google Scholar 

  53. Kamat, N. & Velho-Pereira, S. Screening of actinobacteria for antimicrobial activities by a modified Cross-Streak method. Nat. Preced. https://doi.org/10.1038/npre.2012.6765.1 (2012).

    Google Scholar 

  54. Magaldi, S. et al. Well diffusion for antifungal susceptibility testing. Int. J. Infect. Dis. 8, 39–45 (2004). https://www.sciencedirect.com/science/article/pii/S1201971203000067

    Google Scholar 

  55. Chevrette, M. G. et al. The antimicrobial potential of Streptomyces from insect microbiomes. Nat. Commun. 10, 516. https://doi.org/10.1038/s41467-019-08438-0 (2019).

    Google Scholar 

  56. Bach, E., Volpiano, C. G., Sant’anna, F. H. & Passaglia, L. M. P. Genome-based taxonomy of Burkholderia sensu lato: distinguishing closely related species. Genet. Mol. Biol. 46, 1–13 (2023).

    Google Scholar 

  57. Kunakom, S. & Eustáquio, A. S. Burkholderia as a source of natural products. J. Nat. Prod. 82, 2018–2037 (2019).

    Google Scholar 

  58. El-Banna & Winkelmann Pyrrolnitrin from Burkholderia cepacia: antibiotic activity against fungi and novel activities against streptomycetes. J. Appl. Microbiol. 85, 69–78. https://doi.org/10.1046/j.1365-2672.1998.00473.x (1998).

    Google Scholar 

  59. Pawar, S., Chaudhari, A., Prabha, R., Shukla, R. & Singh, D. P. Microbial pyrrolnitrin: natural metabolite with immense practical utility. Biomolecules (2019).

  60. Ellermann, M. & Arthur, J. C. Siderophore-mediated iron acquisition and modulation of host-bacterial interactions. Free Radic Biol. Med. 105, 68–78 (2017).

    Google Scholar 

  61. Kloepper, J. W., Leong, J., Teintze, M. & Schroth, M. N. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286, 885–886 (1980).

    Google Scholar 

  62. Ahmed, E. & Holmström, S. J. M. Siderophores in environmental research: roles and applications. Microb. Biotechnol. 7, 196–208 (2014).

    Google Scholar 

  63. Miethke, M. & Marahiel, M. A. Siderophore-based iron acquisition and pathogen control. Microbiol. Mol. Biol. Rev. 71, 413–451. https://doi.org/10.1128/mmbr.00012-07 (2007).

    Google Scholar 

  64. Sandy, M. & Butler, A. Microbial iron acquisition: marine and terrestrial siderophores. Chem. Rev. 109, 4580–4595. https://doi.org/10.1021/cr9002787 (2009).

    Google Scholar 

  65. Neiendam, N. M., Jan, S., Johannes, F. & Christian, P. H. Secondary metabolite- and endochitinase-dependent antagonism toward plant-pathogenic microfungi of Pseudomonas fluorescens isolatesfrom sugar beet rhizosphere. Appl. Environ. Microbiol. 64, 3563–3569. https://doi.org/10.1128/AEM.64.10.3563-3569.1998 (1998).

    Google Scholar 

  66. Nagarajkumar, M., Bhaskaran, R. & Velazhahan, R. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in Inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiol. Res. 159, 73–81 (2004). https://www.sciencedirect.com/science/article/pii/S0944501304000072

    Google Scholar 

  67. Hu, J., Wang, Z. & Xu, W. Production-optimized fermentation of antifungal compounds by Bacillus velezensis LZN01 and transcriptome analysis. Microb. Biotechnol. 17, e70026. https://doi.org/10.1111/1751-7915.70026 (2024).

    Google Scholar 

  68. Hill, D. S. et al. Cloning of genes involved in the synthesis of Pyrrolnitrin from Pseudomonas fluorescens and role of Pyrrolnitrin synthesis in biological control of plant disease. Appl. Environ. Microbiol. 60, 78–85 (1994).

    Google Scholar 

  69. Hwang, J., Chilton, W. S. & Benson, D. M. Pyrrolnitrin production by Burkholderia Cepacia and biocontrol of Rhizoctonia stem rot of poinsettia. Biol. Control. 25, 56–63 (2002). https://www.sciencedirect.com/science/article/pii/S1049964402000440

    Google Scholar 

  70. Gondry, M. et al. Cyclodipeptide synthases are a family of tRNA-dependent peptide bond–forming enzymes. Nat. Chem. Biol. 5, 414–420 (2009).

    Google Scholar 

  71. Kumar, N., Mohandas, C., Nambisan, B., Kumar, D. R. S. & Lankalapalli, R. S. Isolation of proline-based cyclic dipeptides from Bacillus sp. N strain associated with rhabitid entomopathogenic nematode and its antimicrobial properties. World J. Microbiol. Biotechnol. 29, 355–364 (2013).

    Google Scholar 

  72. Canu, N., Moutiez, M., Belin, P. & Gondry, M. Cyclodipeptide synthases: a promising biotechnological tool for the synthesis of diverse 2, 5-diketopiperazines. Nat. Prod. Rep. 37, 312–321 (2020).

    Google Scholar 

  73. Maiti, P. K. & Mandal, S. Comprehensive genome analysis of Lentzea reveals repertoire of polymer-degrading enzymes and bioactive compounds with clinical relevance. Sci. Rep. 12, 8409. https://doi.org/10.1038/s41598-022-12427-7 (2022).

    Google Scholar 

  74. Yan, D. et al. Discovering type I cis-AT polyketides through computational mass spectrometry and genome mining with Seq2PKS. Nat. Commun. 15, 5356. https://doi.org/10.1038/s41467-024-49587-1 (2024).

    Google Scholar 

  75. Paysan-Lafosse, T. et al. The Pfam protein families database: embracing AI/ML. Nucleic Acids Res. 53,, D523–534. https://doi.org/10.1093/nar/gkae997 (2025).

    Google Scholar 

  76. Jahns, C. et al. Pellasoren: structure elucidation, biosynthesis, and total synthesis of a cytotoxic secondary metabolite from Sorangium cellulosum. Angew Chemie Int. Ed. 51, 5239–5243. https://doi.org/10.1002/anie.201200327 (2012).

    Google Scholar 

  77. Zhou, L., Song, C., Li, Z. & Kuipers, O. P. Antimicrobial activity screening of rhizosphere soil bacteria from tomato and genome-based analysis of their antimicrobial biosynthetic potential. BMC Genom. 22, 29. https://doi.org/10.1186/s12864-020-07346-8 (2021).

    Google Scholar 

  78. Sunithakumari, V. S., Menon, R. R., Suresh, G. G., Krishnan, R. & Rameshkumar, N. Characterization of a novel root-associated diazotrophic rare PGPR taxa, Aquabacter pokkalii sp. nov, isolated from pokkali rice: new insights into the plant-associated lifestyle and brackish adaptation. BMC Genom. 25, 424 (2024).

    Google Scholar 

  79. Babu-Khan, S. et al. Cloning of a mineral phosphate-solubilizing gene from Pseudomonas Cepacia. Appl. Environ. Microbiol. 61, 972–978. https://doi.org/10.1128/aem.61.3.972-978.1995 (1995).

    Google Scholar 

  80. Buch, A. D., Archana, G. & Kumar, G. N. Enhanced citric acid biosynthesis in Pseudomonas fluorescens ATCC 13525 by overexpression of the Escherichia coli citrate synthase gene. Microbiology 155, 2620–2629 (2009).

    Google Scholar 

  81. Gardner, S. G., Johns, K. D., Tanner, R. & McCleary, W. R. The PhoU protein from Escherichia coli interacts with PhoR, PstB, and metals to form a phosphate-signaling complex at the membrane. J. Bacteriol. 196, 1741–1752. https://doi.org/10.1128/jb.00029-14 (2014).

    Google Scholar 

  82. Gupta, S. & Pandey, S. ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Front. Microbiol. 10, 1506. https://doi.org/10.3389/fmicb.2019.01506 (2019). https://www.frontiersin.org/journals/microbiology/articles/

    Google Scholar 

  83. Li, B. et al. Exogenous spermidine inhibits ethylene production in leaves of cucumber seedlings under NaCl stress. J. Am. Soc. Hortic. Sci. J. Amer Soc. Hort Sci. 138, 108–113 (2013).https://journals.ashs.org/jashs/view/journals/jashs/138/2/article-p108.xml

    Google Scholar 

  84. Xie, S. S. et al. Plant growth promotion by spermidine-producing Bacillus subtilis OKB105. Mol. Plant-Microbe Interact. 27, 655–663. https://doi.org/10.1094/MPMI-01-14-0010-R (2014).

    Google Scholar 

  85. Tang, J. et al. Biosynthetic pathways and functions of indole-3-acetic acid in microorganisms. Microorganisms (2023).

  86. Klessig, D. F., Choi, H. W. & Dempsey, D. A. Systemic acquired resistance and Salicylic acid: past, present, and future. Mol. Plant-Microbe Interact. 31, 871–888. https://doi.org/10.1094/MPMI-03-18-0067-CR (2018).

    Google Scholar 

  87. Ryu, C. M. et al. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. 100, 4927–4932. https://doi.org/10.1073/pnas.0730845100 (2003).

    Google Scholar 

  88. Ramos, J. L. et al. Responses of Gram-negative bacteria to certain environmental stressors. Curr. Opin. Microbiol. 4, 166–171 (2001). https://www.sciencedirect.com/science/article/pii/S1369527400001831

    Google Scholar 

  89. Jenal, U., Reinders, A. & Lori, C. Cyclic di-GMP: second messenger extraordinaire. Nat. Rev. Microbiol. 15, 271–284. https://doi.org/10.1038/nrmicro.2016.190 (2017).

    Google Scholar 

  90. Dekkers, L. C. et al. Role of the O-Antigen of lipopolysaccharide, and possible roles of growth rate and of NADH: ubiquinone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365. Mol. Plant-Microbe Interact. 11, 763–771. https://doi.org/10.1094/MPMI.1998.11.8.763 (1998).

    Google Scholar 

  91. Salah Ud-Din, A. I. M. & Roujeinikova, A. Methyl-accepting chemotaxis proteins: a core sensing element in prokaryotes and archaea. Cell. Mol. Life Sci. 74, 3293–3303. https://doi.org/10.1007/s00018-017-2514-0 (2017).

    Google Scholar 

  92. Wall, D. & Kaiser, D. Type IV pili and cell motility. Mol. Microbiol. 32, 1–10. https://doi.org/10.1046/j.1365-2958.1999.01339.x (1999).

    Google Scholar 

  93. Abidi, W., Torres-Sánchez, L., Siroy, A. & Krasteva, P. V. Weaving of bacterial cellulose by the Bcs secretion systems. FEMS Microbiol. Rev (2022).

  94. Hernández-Arriaga, A. M. et al. Genome sequence and characterization of the Bcs clusters for the production of nanocellulose from the low pH resistant strain Komagataeibacter medellinensis ID13488. Microb. Biotechnol. 12, 620–632. https://doi.org/10.1111/1751-7915.13376 (2019).

    Google Scholar 

  95. Dias, G. M. et al. Comparative genomics of Paraburkholderia kururiensis and its potential inbioremediation, biofertilization, and biocontrol of plant pathogens. Microbiologyopen 8e00801. https://doi.org/10.1002/mbo3.801 (2019).

  96. Lugtenberg, B. J. J., Dekkers, L. & Bloemberg, G. V. Molecular determinants of rhizosphere colonization by Pseudomonas. Annu. Rev. Phytopathol. 39, 461–490 (2001). https://www.annualreviews.org/content/journals/10.1146/annurev.phyto.39.1.461

    Google Scholar 

  97. Sultana, S., Alam, S. & Karim, M. M. Screening of siderophore-producing salt-tolerant rhizobacteria suitable for supporting plant growth in saline soils with iron limitation. J. Agric. Food Res. 4, 100150 (2021). https://www.sciencedirect.com/science/article/pii/S2666154321000521

    Google Scholar 

  98. Cornelis, P. & Matthijs, S. Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ. Microbiol. 4, 787–798. https://doi.org/10.1046/j.1462-2920.2002.00369.x (2002).

    Google Scholar 

  99. Kertesz, M. A. Riding the sulfur cycle – metabolism of sulfonates and sulfate esters in Gram-negative bacteria. FEMS Microbiol. Rev. 24, 135–175. https://doi.org/10.1016/S0168-6445(99)00033-9 (2000).

    Google Scholar 

  100. Khan, N. et al. Insights into the interactions among roots, rhizosphere, and rhizobacteria for improving plant growth and tolerance to abiotic stresses: a review. Cells (2021).

  101. Ali, S., Tyagi, A. & Bae, H. ROS interplay between plant growth and stress biology: challenges and future perspectives. Plant. Physiol. Biochem. 203, 108032 (2023). https://www.sciencedirect.com/science/article/pii/S0981942823005430

    Google Scholar 

  102. Ballal, A., Basu, B. & Apte, S. K. The Kdp-ATPase system and its regulation. J. Biosci. 32, 559–568. https://doi.org/10.1007/s12038-007-0055-7 (2007).

    Google Scholar 

  103. Richter, M. & Rosselló-Móra, R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. 106, 19126–19131. https://doi.org/10.1073/pnas.0906412106 (2009).

    Google Scholar 

  104. Rodriguez-R, L. M. et al. An ANI gap within bacterial species that advances the definitions of intra-species units. MBio 15, e02696–e02623 (2024).

    Google Scholar 

  105. Wallner, A., King, E., Ngonkeu, E. L. M., Moulin, L. & Béna, G. Genomic analyses of Burkholderia cenocepacia reveal multiple species with differential host-adaptation to plants and humans. BMC Genom. 20, 803. https://doi.org/10.1186/s12864-019-6186-z (2019).

    Google Scholar 

  106. Deng, P. et al. Comparative genome-wide analysis reveals that Burkholderia contaminans MS14 possesses multiple antimicrobial biosynthesis genes but not major genetic loci required for pathogenesis. Microbiologyopen 5, 353–369. https://doi.org/10.1002/mbo3.333 (2016).

    Google Scholar 

  107. Sandra, S. et al. VgrG-5 is a Burkholderia type VI secretion system-exported protein required for multinucleated giant cell formation and virulence. Infect. Immun. 82, 1445–1452. https://doi.org/10.1128/iai.01368-13 (2014).

    Google Scholar 

  108. Guo, F. B. et al. Identification and analysis of genomic Islands in Burkholderia cenocepacia AU 1054 with emphasis on pathogenicity Islands. BMC Microbiol. 17, 73. https://doi.org/10.1186/s12866-017-0986-6 (2017).

    Google Scholar 

  109. Sim, S. H. et al. The core and accessory genomes of Burkholderia pseudomallei: implications for human melioidosis. PLoS Pathog. 4, e1000178 (2008).

    Google Scholar 

  110. Bhat, A. et al. Role of transposable elements in genome stability: implications for health and disease. Int. J. Mol. Sci. 23, 7802 (2022).

    Google Scholar 

Download references