Genotype-dependent salt tolerance mechanisms in wheat–Thinopyrum introgression lines revealed by ion transporter gene expression and seedling phenotyping

genotype-dependent-salt-tolerance-mechanisms-in-wheat–thinopyrum-introgression-lines-revealed-by-ion-transporter-gene-expression-and-seedling-phenotyping
Genotype-dependent salt tolerance mechanisms in wheat–Thinopyrum introgression lines revealed by ion transporter gene expression and seedling phenotyping

References

  1. Shiferaw, B. et al. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Sec. 5, 291–317 (2013).

    Google Scholar 

  2. Filip, E., Woronko, K., Stępień, E. & Czarniecka, N. An overview of factors affecting the functional quality of common wheat (Triticum aestivum L). Int. J. Mol. Sci. 24, 7524 (2023).

    Google Scholar 

  3. Acquaah, G. Principles of Plant Genetics and Breeding (Blackwell Publishing, 2007).

  4. Shrivastava, P. & Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 22, 123–131 (2015).

    Google Scholar 

  5. Blumwald, E., Aharon, G. S. & Apse, M. P. Sodium transport in plant cells. Biochimica Et Biophys. Acta (BBA) – Biomembranes. 1465, 140–151 (2000).

    Google Scholar 

  6. Ashraf, M. & Harris, P. J. C. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 166, 3–16 (2004).

    Google Scholar 

  7. Hao, S. et al. A review on plant responses to salt stress and their mechanisms of salt resistance. Horticulturae 7, 132 (2021).

    Google Scholar 

  8. Sabagh, E. L. A. et al. Salinity stress in wheat (Triticum aestivum L.) in the changing climate: adaptation and management strategies. Front Agron 3, (2021).

  9. Munns, R. & Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681 (2008).

    Google Scholar 

  10. Liang, W., Ma, X., Wan, P. & Liu, L. Plant salt-tolerance mechanism: A review. Biochem. Biophys. Res. Commun. 495, 286–291 (2018).

    Google Scholar 

  11. Darko, E. et al. Addition of Aegilops biuncialis chromosomes 2 M or 3 M improves the salt tolerance of wheat in different way. Sci. Rep. 10, 22327 (2020).

    Google Scholar 

  12. Gholizadeh, F., Mirmazloum, I. & Janda, T. Genome-wide identification of HKT gene family in wheat (Triticum aestivum L.): insights from the expression of multiple genes (HKT, SOS, TVP and NHX) under salt stress. Plant. Stress. 13, 100539 (2024).

    Google Scholar 

  13. Ali, A., Petrov, V., Yun, D. J. & Gechev, T. Revisiting plant salt tolerance: novel components of the SOS pathway. Trends Plant Sci. 28, 1060–1069 (2023).

    Google Scholar 

  14. Meena, K. K. et al. Stress-responsive gene regulation conferring salinity tolerance in wheat inoculated with ACC deaminase producing facultative Methylotrophic actinobacterium. Front Plant. Sci. 14, (2023).

  15. Sharma, P., Mishra, S., Pandey, B. & Singh, G. Genome-wide identification and expression analysis of the NHX gene family under salt stress in wheat (Triticum aestivum L). Front Plant. Sci. 14, (2023).

  16. Byrt, C. S. et al. HKT1;5-Like cation transporters linked to Na+ exclusion loci in Wheat, Nax2 and Kna1. Plant. Physiol. 143, 1918–1928 (2007).

    Google Scholar 

  17. Zhou, X. et al. The classical SOS pathway confers natural variation of salt tolerance in maize. New Phytol. 236, 479–494 (2022).

    Google Scholar 

  18. Gulzar, R. M. A. et al. Genome-wide identification of NHX gene family and effects of Salicylic acid in regulating antioxidant activity as well as nutrients deposition under salt stress in three brassica species. BMC Plant Biol. 25, 740 (2025).

    Google Scholar 

  19. Colmer, T. D., Flowers, T. J. & Munns, R. Use of wild relatives to improve salt tolerance in wheat. J. Exp. Bot. 57, 1059–1078 (2006).

    Google Scholar 

  20. Aronson, J. Economic halophytes — a global review. in Plants for Arid Lands: Proceedings of the Kew International Conference on Economic Plants for Arid Lands held in the Jodrell Laboratory, Royal Botanic Gardens, Kew, England, 23–27 July (eds Wickens, G. E., Goodin, J. R. & Field, D. V.) 177–188 (Springer Netherlands, Dordrecht, 1985). (eds Wickens, G. E., Goodin, J. R. & Field, D. V.) 177–188 (Springer Netherlands, Dordrecht, 1985). (1984). https://doi.org/10.1007/978-94-011-6830-4_13.

  21. Flowers, T. J. & Colmer, T. D. Salinity tolerance in halophytes. New Phytol. 179, 945–963 (2008).

    Google Scholar 

  22. Dewey, D. R. Salt tolerance of Twenty-five strains of agropyron. Agron. J. 52, 631–635 (1960).

    Google Scholar 

  23. McGuire, P. E. & Dvorák, J. Relationship between the number of Homoeologues, Chiasma frequency and the frequency of telosome pairing in wheat. Genetics 98, 589–596 (1981).

    Google Scholar 

  24. Greenway, H. & Rogers, A. Growth and ion uptake of agropyron elongatum on saline substrates, as compared with a salt-tolerant variety of hordeum vulgare. Plant. Soil. 18, 21–30 (1963).

    Google Scholar 

  25. Shannon, M. C. Testing salt tolerance variability among tall wheatgrass Lines1. Agron. J. 70, 719–722 (1978).

    Google Scholar 

  26. Weimberg, R. & Shannon, M. C. Vigor and salt tolerance in 3 lines of tall wheatgrass. Physiol. Plant. 73, 232–237 (1988).

    Google Scholar 

  27. Dvořák, J., Edge, M. & Ross, K. On the evolution of the adaptation of lophopyrum elongatum to growth in saline environments. Proc. Natl. Acad. Sci. 85, 3805–3809 (1988).

    Google Scholar 

  28. Omielan, J. A., Epstein, E. & Dvořák, J. Salt tolerance and ionic relations of wheat as affected by individual chromosomes of salt-tolerant lophopyrum elongatum. Genome 34, 961–974 (1991).

    Google Scholar 

  29. Deal, K. R., Goyal, S. & Dvorak, J. Arm location of lophopyrum elongatum genes affecting K+/Na+ selectivity under salt stress. Euphytica 108, 193–198 (1999).

    Google Scholar 

  30. Zeng, J. et al. Disomic substitution of 3D chromosome with its homoeologue 3E in tetraploid Thinopyrum elongatum enhances wheat seedlings tolerance to salt stress. Int. J. Mol. Sci. 24, 1609 (2023).

    Google Scholar 

  31. Hampson, C. R. & Simpson, G. M. Effects of temperature, salt, and osmotic potential on early growth of wheat (Triticum aestivum). I. Germination. Can. J. Bot. 68, 524–528 (1990).

    Google Scholar 

  32. Almansouri, M., Kinet, J. M. & Lutts, S. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf). Plant. Soil. 231, 243–254 (2001).

    Google Scholar 

  33. Dodd, G. L. & Donovan, L. A. Water potential and ionic effects on germination and seedling growth of two cold desert shrubs. Am. J. Bot. 86, 1146–1153 (1999).

    Google Scholar 

  34. Mahboob, W. et al. Salinity tolerance in wheat: responses, mechanisms and adaptation approaches. Appl. Ecol. Environ. Res. 21, 6 (2023).

    Google Scholar 

  35. Kruppa, K. et al. Genotyping-by-sequencing uncovers a Thinopyrum 4StS·1JvsS Robertsonian translocation linked to multiple stress tolerances in bread wheat. Theor. Appl. Genet. 138, 13 (2025).

    Google Scholar 

  36. Türkösi, E. et al. Replacement of chromosome 3D with Thinopyrum chromosome 3St led to increased drought tolerance during the flowering stage in wheat. Plant. Cell. Rep. 44, 242 (2025).

    Google Scholar 

  37. Kruppa, K. & Molnar-Lang, M. Simultaneous visualization of different genomes (J, JSt and St) in a Thinopyrum intermedium × Thinopyrum ponticum synthetic hybrid (Poaceae) and in its parental species by multicolour genomic in situ hybridization (mcGISH). CCG 10, 283–293 (2016).

    Google Scholar 

  38. Türkösi, E. et al. A chromosome arm from Thinopyrum intermedium × Thinopyrum ponticum hybrid confers increased tillering and yield potential in wheat. Mol. Breed. 44, 7 (2024).

    Google Scholar 

  39. Vrána, J. et al. Flow analysis and sorting of plant chromosomes. CP Cytometry 78, (2016).

  40. Kato, A., Lamb, J. C. & Birchler, J. A. Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc. Natl. Acad. Sci. U.S.A. 101, 13554–13559 (2004).

  41. Nagaki, K., Tsujimoto, H., Isono, K. & Sasakuma, T. Molecular characterization of a tandem repeat, Afa family, and its distribution among triticeae. Genome 38, 479–486 (1995).

    Google Scholar 

  42. Contento, A., Heslop-Harrison, J. S. & Schwarzacher, T. Diversity of a major repetitive DNA sequence in diploid and polyploid triticeae. Cytogenet. Genome Res. 109, 34–42 (2005).

    Google Scholar 

  43. Tang, Z., Yang, Z. & Fu, S. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J. Appl. Genet. 55, 313–318 (2014).

    Google Scholar 

  44. Ullah, A. et al. Using halothermal time model to describe barley (Hordeum vulgare L.) seed germination response to water potential and temperature. Life 12, 209 (2022).

    Google Scholar 

  45. Gholizadeh, F. et al. Improvement of drought tolerance by exogenous spermidine in germinating wheat (Triticum aestivum L.) plants is accompanied with changes in metabolite composition. Int. J. Mol. Sci. 23, 9047 (2022).

    Google Scholar 

  46. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta delta C(T)) method. Methods 25, 402–408 (2001).

    Google Scholar 

  47. Amirbakhtiar, N. et al. Transcriptome analysis of bread wheat leaves in response to salt stress. PLOS ONE. 16, e0254189 (2021).

    Google Scholar 

  48. Lekshmy Sathee, Sairam, R. K., Chinnusamy, V. & Jha, S. K. Differential transcript abundance of salt overly sensitive (SOS) pathway genes is a determinant of salinity stress tolerance of wheat. Acta Physiol. Plant. 37, 169 (2015).

    Google Scholar 

  49. Darko, E. et al. Differing metabolic responses to salt stress in wheat-barley addition lines containing different 7H chromosomal fragments. PLOS ONE. 12, e0174170 (2017).

    Google Scholar 

  50. Seifert, E. OriginPro 9.1: Scientific Data Analysis and Graphing Software, Software Review (In: ACS, 2014).

  51. Dong, Z. et al. Genome-wide impacts of alien chromatin introgression on wheat gene transcriptions. Sci. Rep. 10, 4801 (2020).

    Google Scholar 

  52. Polgári, D., Mihók, E. & Sági, L. Composition and random elimination of paternal chromosomes in a large population of wheat × barley (Triticum aestivum L. × Hordeum vulgare L.) hybrids. Plant. Cell. Rep. 38, 767–775 (2019).

    Google Scholar 

  53. Pernickova, K. et al. Out-of-position telomeres in meiotic leptotene appear responsible for chiasmate pairing in an inversion heterozygote in wheat (Triticum aestivum L). Chromosoma 128, 31–39 (2019).

    Google Scholar 

  54. Ishii, T., Karimi-Ashtiyani, R. & Houben, A. Haploidization via chromosome elimination: means and mechanisms. Annu. Rev. Plant Biol. 67, 421–438 (2016).

    Google Scholar 

  55. Perničková, K. et al. Instability of alien chromosome introgressions in wheat associated with improper positioning in the nucleus. Int. J. Mol. Sci. 20, 1448 (2019).

    Google Scholar 

  56. Comai, L. & Marimuthu, M. P. A. Pioneers of chromosome elimination. Front. Epigenet. Epigenom. 3, (2025).

  57. Said, M. et al. Gametocidal genes: from a discovery to the application in wheat breeding. Front. Plant. Sci. 15, (2024).

  58. Cseh, A. et al. Meiotic instability and irregular chromosome pairing underpin heat-induced infertility in bread wheat carrying the Rht-B1b or Rht-D1b green revolution genes. New Phytol. 241, 180–196 (2024).

    Google Scholar 

  59. Molnár-Láng, M., Linc, G. & Szakács, É. Wheat–barley hybridization: the last 40 years. Euphytica 195, 315–329 (2014).

    Google Scholar 

  60. Molnár-Láng, M., Kruppa, K., Cseh, A., Bucsi, J. & Linc, G. Identification and phenotypic description of new wheat – six-rowed winter barley disomic additions. Genome 55, 302–311 (2012).

    Google Scholar 

  61. Pedersen, C. & Langridge, P. Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome 40, 589–593 (1997).

    Google Scholar 

  62. Yang, X. et al. Genetic diversity of Asian and European common wheat lines assessed by fluorescence in situ hybridization. Genome 64, 959–968 (2021).

    Google Scholar 

  63. Pabuayon, I. C. M., Jiang, J., Qian, H., Chung, J. S. & Shi, H. Gain-of-function mutations of AtNHX1 suppress sos1 salt sensitivity and improve salt tolerance in Arabidopsis. Stress Biol. 1, 14 (2021).

    Google Scholar 

  64. Kumar, S., Beena, A. S., Awana, M., Singh, A. & Physiological Biochemical, epigenetic and molecular analyses of wheat (Triticum aestivum) genotypes with contrasting salt tolerance. Front Plant. Sci 8, (2017).

  65. Jadidi, O., Etminan, A., Azizi-Nezhad, R., Ebrahimi, A. & Pour-Aboughadareh, A. Physiological and molecular responses of barley genotypes to salinity stress. Genes 13, 2040 (2022).

    Google Scholar 

  66. Apse, M. P., Aharon, G. S., Snedden, W. A. & Blumwald, E. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285, 1256–1258 (1999).

    Google Scholar 

  67. Sharma, P., Mishra, S., Pandey, B. & Singh, G. Genome-wide identification and expression analysis of the NHX gene family under salt stress in wheat (Triticum aestivum L). Front Plant. Sci 14, (2023).

  68. Shi, H., Ishitani, M., Kim, C. & Zhu, J. K. The Arabidopsis Thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc. Natl. Acad. Sci. U S A. 97, 6896–6901 (2000).

    Google Scholar 

  69. Halfter, U., Ishitani, M. & Zhu, J. K. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc. Natl. Acad. Sci. 97, 3735–3740 (2000).

    Google Scholar 

  70. Mullan, D. J., Colmer, T. D. & Francki, M. G. Arabidopsis-rice-wheat gene orthologues for Na+ transport and transcript analysis in wheat-L. Elongatum aneuploids under salt stress. Mol. Genet. Genomics. 277, 199–212 (2007).

    Google Scholar 

Download references