References
-
Shiferaw, B. et al. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Sec. 5, 291–317 (2013).
-
Filip, E., Woronko, K., Stępień, E. & Czarniecka, N. An overview of factors affecting the functional quality of common wheat (Triticum aestivum L). Int. J. Mol. Sci. 24, 7524 (2023).
-
Acquaah, G. Principles of Plant Genetics and Breeding (Blackwell Publishing, 2007).
-
Shrivastava, P. & Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 22, 123–131 (2015).
-
Blumwald, E., Aharon, G. S. & Apse, M. P. Sodium transport in plant cells. Biochimica Et Biophys. Acta (BBA) – Biomembranes. 1465, 140–151 (2000).
-
Ashraf, M. & Harris, P. J. C. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 166, 3–16 (2004).
-
Hao, S. et al. A review on plant responses to salt stress and their mechanisms of salt resistance. Horticulturae 7, 132 (2021).
-
Sabagh, E. L. A. et al. Salinity stress in wheat (Triticum aestivum L.) in the changing climate: adaptation and management strategies. Front Agron 3, (2021).
-
Munns, R. & Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681 (2008).
-
Liang, W., Ma, X., Wan, P. & Liu, L. Plant salt-tolerance mechanism: A review. Biochem. Biophys. Res. Commun. 495, 286–291 (2018).
-
Darko, E. et al. Addition of Aegilops biuncialis chromosomes 2 M or 3 M improves the salt tolerance of wheat in different way. Sci. Rep. 10, 22327 (2020).
-
Gholizadeh, F., Mirmazloum, I. & Janda, T. Genome-wide identification of HKT gene family in wheat (Triticum aestivum L.): insights from the expression of multiple genes (HKT, SOS, TVP and NHX) under salt stress. Plant. Stress. 13, 100539 (2024).
-
Ali, A., Petrov, V., Yun, D. J. & Gechev, T. Revisiting plant salt tolerance: novel components of the SOS pathway. Trends Plant Sci. 28, 1060–1069 (2023).
-
Meena, K. K. et al. Stress-responsive gene regulation conferring salinity tolerance in wheat inoculated with ACC deaminase producing facultative Methylotrophic actinobacterium. Front Plant. Sci. 14, (2023).
-
Sharma, P., Mishra, S., Pandey, B. & Singh, G. Genome-wide identification and expression analysis of the NHX gene family under salt stress in wheat (Triticum aestivum L). Front Plant. Sci. 14, (2023).
-
Byrt, C. S. et al. HKT1;5-Like cation transporters linked to Na+ exclusion loci in Wheat, Nax2 and Kna1. Plant. Physiol. 143, 1918–1928 (2007).
-
Zhou, X. et al. The classical SOS pathway confers natural variation of salt tolerance in maize. New Phytol. 236, 479–494 (2022).
-
Gulzar, R. M. A. et al. Genome-wide identification of NHX gene family and effects of Salicylic acid in regulating antioxidant activity as well as nutrients deposition under salt stress in three brassica species. BMC Plant Biol. 25, 740 (2025).
-
Colmer, T. D., Flowers, T. J. & Munns, R. Use of wild relatives to improve salt tolerance in wheat. J. Exp. Bot. 57, 1059–1078 (2006).
-
Aronson, J. Economic halophytes — a global review. in Plants for Arid Lands: Proceedings of the Kew International Conference on Economic Plants for Arid Lands held in the Jodrell Laboratory, Royal Botanic Gardens, Kew, England, 23–27 July (eds Wickens, G. E., Goodin, J. R. & Field, D. V.) 177–188 (Springer Netherlands, Dordrecht, 1985). (eds Wickens, G. E., Goodin, J. R. & Field, D. V.) 177–188 (Springer Netherlands, Dordrecht, 1985). (1984). https://doi.org/10.1007/978-94-011-6830-4_13.
-
Flowers, T. J. & Colmer, T. D. Salinity tolerance in halophytes. New Phytol. 179, 945–963 (2008).
-
Dewey, D. R. Salt tolerance of Twenty-five strains of agropyron. Agron. J. 52, 631–635 (1960).
-
McGuire, P. E. & Dvorák, J. Relationship between the number of Homoeologues, Chiasma frequency and the frequency of telosome pairing in wheat. Genetics 98, 589–596 (1981).
-
Greenway, H. & Rogers, A. Growth and ion uptake of agropyron elongatum on saline substrates, as compared with a salt-tolerant variety of hordeum vulgare. Plant. Soil. 18, 21–30 (1963).
-
Shannon, M. C. Testing salt tolerance variability among tall wheatgrass Lines1. Agron. J. 70, 719–722 (1978).
-
Weimberg, R. & Shannon, M. C. Vigor and salt tolerance in 3 lines of tall wheatgrass. Physiol. Plant. 73, 232–237 (1988).
-
Dvořák, J., Edge, M. & Ross, K. On the evolution of the adaptation of lophopyrum elongatum to growth in saline environments. Proc. Natl. Acad. Sci. 85, 3805–3809 (1988).
-
Omielan, J. A., Epstein, E. & Dvořák, J. Salt tolerance and ionic relations of wheat as affected by individual chromosomes of salt-tolerant lophopyrum elongatum. Genome 34, 961–974 (1991).
-
Deal, K. R., Goyal, S. & Dvorak, J. Arm location of lophopyrum elongatum genes affecting K+/Na+ selectivity under salt stress. Euphytica 108, 193–198 (1999).
-
Zeng, J. et al. Disomic substitution of 3D chromosome with its homoeologue 3E in tetraploid Thinopyrum elongatum enhances wheat seedlings tolerance to salt stress. Int. J. Mol. Sci. 24, 1609 (2023).
-
Hampson, C. R. & Simpson, G. M. Effects of temperature, salt, and osmotic potential on early growth of wheat (Triticum aestivum). I. Germination. Can. J. Bot. 68, 524–528 (1990).
-
Almansouri, M., Kinet, J. M. & Lutts, S. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf). Plant. Soil. 231, 243–254 (2001).
-
Dodd, G. L. & Donovan, L. A. Water potential and ionic effects on germination and seedling growth of two cold desert shrubs. Am. J. Bot. 86, 1146–1153 (1999).
-
Mahboob, W. et al. Salinity tolerance in wheat: responses, mechanisms and adaptation approaches. Appl. Ecol. Environ. Res. 21, 6 (2023).
-
Kruppa, K. et al. Genotyping-by-sequencing uncovers a Thinopyrum 4StS·1JvsS Robertsonian translocation linked to multiple stress tolerances in bread wheat. Theor. Appl. Genet. 138, 13 (2025).
-
Türkösi, E. et al. Replacement of chromosome 3D with Thinopyrum chromosome 3St led to increased drought tolerance during the flowering stage in wheat. Plant. Cell. Rep. 44, 242 (2025).
-
Kruppa, K. & Molnar-Lang, M. Simultaneous visualization of different genomes (J, JSt and St) in a Thinopyrum intermedium × Thinopyrum ponticum synthetic hybrid (Poaceae) and in its parental species by multicolour genomic in situ hybridization (mcGISH). CCG 10, 283–293 (2016).
-
Türkösi, E. et al. A chromosome arm from Thinopyrum intermedium × Thinopyrum ponticum hybrid confers increased tillering and yield potential in wheat. Mol. Breed. 44, 7 (2024).
-
Vrána, J. et al. Flow analysis and sorting of plant chromosomes. CP Cytometry 78, (2016).
-
Kato, A., Lamb, J. C. & Birchler, J. A. Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc. Natl. Acad. Sci. U.S.A. 101, 13554–13559 (2004).
-
Nagaki, K., Tsujimoto, H., Isono, K. & Sasakuma, T. Molecular characterization of a tandem repeat, Afa family, and its distribution among triticeae. Genome 38, 479–486 (1995).
-
Contento, A., Heslop-Harrison, J. S. & Schwarzacher, T. Diversity of a major repetitive DNA sequence in diploid and polyploid triticeae. Cytogenet. Genome Res. 109, 34–42 (2005).
-
Tang, Z., Yang, Z. & Fu, S. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J. Appl. Genet. 55, 313–318 (2014).
-
Ullah, A. et al. Using halothermal time model to describe barley (Hordeum vulgare L.) seed germination response to water potential and temperature. Life 12, 209 (2022).
-
Gholizadeh, F. et al. Improvement of drought tolerance by exogenous spermidine in germinating wheat (Triticum aestivum L.) plants is accompanied with changes in metabolite composition. Int. J. Mol. Sci. 23, 9047 (2022).
-
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta delta C(T)) method. Methods 25, 402–408 (2001).
-
Amirbakhtiar, N. et al. Transcriptome analysis of bread wheat leaves in response to salt stress. PLOS ONE. 16, e0254189 (2021).
-
Lekshmy Sathee, Sairam, R. K., Chinnusamy, V. & Jha, S. K. Differential transcript abundance of salt overly sensitive (SOS) pathway genes is a determinant of salinity stress tolerance of wheat. Acta Physiol. Plant. 37, 169 (2015).
-
Darko, E. et al. Differing metabolic responses to salt stress in wheat-barley addition lines containing different 7H chromosomal fragments. PLOS ONE. 12, e0174170 (2017).
-
Seifert, E. OriginPro 9.1: Scientific Data Analysis and Graphing Software, Software Review (In: ACS, 2014).
-
Dong, Z. et al. Genome-wide impacts of alien chromatin introgression on wheat gene transcriptions. Sci. Rep. 10, 4801 (2020).
-
Polgári, D., Mihók, E. & Sági, L. Composition and random elimination of paternal chromosomes in a large population of wheat × barley (Triticum aestivum L. × Hordeum vulgare L.) hybrids. Plant. Cell. Rep. 38, 767–775 (2019).
-
Pernickova, K. et al. Out-of-position telomeres in meiotic leptotene appear responsible for chiasmate pairing in an inversion heterozygote in wheat (Triticum aestivum L). Chromosoma 128, 31–39 (2019).
-
Ishii, T., Karimi-Ashtiyani, R. & Houben, A. Haploidization via chromosome elimination: means and mechanisms. Annu. Rev. Plant Biol. 67, 421–438 (2016).
-
Perničková, K. et al. Instability of alien chromosome introgressions in wheat associated with improper positioning in the nucleus. Int. J. Mol. Sci. 20, 1448 (2019).
-
Comai, L. & Marimuthu, M. P. A. Pioneers of chromosome elimination. Front. Epigenet. Epigenom. 3, (2025).
-
Said, M. et al. Gametocidal genes: from a discovery to the application in wheat breeding. Front. Plant. Sci. 15, (2024).
-
Cseh, A. et al. Meiotic instability and irregular chromosome pairing underpin heat-induced infertility in bread wheat carrying the Rht-B1b or Rht-D1b green revolution genes. New Phytol. 241, 180–196 (2024).
-
Molnár-Láng, M., Linc, G. & Szakács, É. Wheat–barley hybridization: the last 40 years. Euphytica 195, 315–329 (2014).
-
Molnár-Láng, M., Kruppa, K., Cseh, A., Bucsi, J. & Linc, G. Identification and phenotypic description of new wheat – six-rowed winter barley disomic additions. Genome 55, 302–311 (2012).
-
Pedersen, C. & Langridge, P. Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome 40, 589–593 (1997).
-
Yang, X. et al. Genetic diversity of Asian and European common wheat lines assessed by fluorescence in situ hybridization. Genome 64, 959–968 (2021).
-
Pabuayon, I. C. M., Jiang, J., Qian, H., Chung, J. S. & Shi, H. Gain-of-function mutations of AtNHX1 suppress sos1 salt sensitivity and improve salt tolerance in Arabidopsis. Stress Biol. 1, 14 (2021).
-
Kumar, S., Beena, A. S., Awana, M., Singh, A. & Physiological Biochemical, epigenetic and molecular analyses of wheat (Triticum aestivum) genotypes with contrasting salt tolerance. Front Plant. Sci 8, (2017).
-
Jadidi, O., Etminan, A., Azizi-Nezhad, R., Ebrahimi, A. & Pour-Aboughadareh, A. Physiological and molecular responses of barley genotypes to salinity stress. Genes 13, 2040 (2022).
-
Apse, M. P., Aharon, G. S., Snedden, W. A. & Blumwald, E. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285, 1256–1258 (1999).
-
Sharma, P., Mishra, S., Pandey, B. & Singh, G. Genome-wide identification and expression analysis of the NHX gene family under salt stress in wheat (Triticum aestivum L). Front Plant. Sci 14, (2023).
-
Shi, H., Ishitani, M., Kim, C. & Zhu, J. K. The Arabidopsis Thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc. Natl. Acad. Sci. U S A. 97, 6896–6901 (2000).
-
Halfter, U., Ishitani, M. & Zhu, J. K. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc. Natl. Acad. Sci. 97, 3735–3740 (2000).
-
Mullan, D. J., Colmer, T. D. & Francki, M. G. Arabidopsis-rice-wheat gene orthologues for Na+ transport and transcript analysis in wheat-L. Elongatum aneuploids under salt stress. Mol. Genet. Genomics. 277, 199–212 (2007).
