References
-
Hutchings, M. I., Truman, A. W. & Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 51, 72–80 (2019).
-
Gillespie, S. H. Antibiotic resistance in the absence of selective pressure. Int. J. Antimicrob. Agents. 17, 171–176 (2001).
-
Amiri, N. et al. Two novel magnesium(II) meso-tetraphenylporphyrin coordination complexes: syntheses, structure elucidation, spectroscopy, photophysical properties and antibacterial activity. J. Solid State Chem. 258, 477–484 (2018).
-
Ezzayani, K. et al. Coordination polymer with magnesium porphyrin: synthesis, structure, photophysical properties and antibacterial activity. Inorg. Chim. Acta. 514, 119960 (2021).
-
Wang, Z. et al. Nanoporous porphyrin polymers for gas storage and separation. Macromolecules 45, 7413–7419 (2012).
-
Lvova, L. et al. SWCNTs modified with porphyrins for chemical sensing applications. Procedia Eng. 5, 1043–1046 (2010).
-
Fidalgo-Marijuan, A. et al. Heterogeneous catalysis by μ-O-[FeTCPP]₂ dimers: unusual superhyperfine EPR structure. Dalton Trans. 44, 213–222 (2015).
-
Fields, K. B. et al. Cobalt carbaporphyrin-catalyzed cyclopropanation. Chem. Commun. 47, 749–751 (2011).
-
Sautour, M. et al. Acid-functionalized porphyrins with antimicrobial activity against Gram-positive bacteria, yeasts and fungi. Bioorg. Med. Chem. 109, 117810 (2024).
-
Vzorov, A. N., Dixon, D. W., Trommel, J. S., Marzilli, L. G. & Compans, R. W. Inactivation of HIV-1 by porphyrins. Antimicrob. Agents Chemother. 46, 3917–3925 (2002).
-
Carré, V. et al. Fungicidal meso-arylglycosylporphyrins: influence of sugar substituents on yeast photo-damage. J. Photochem. Photobiol. B. 48, 57–62 (1999).
-
Dizaj, S. M., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M. H. & Adibkia, K. Antimicrobial activity of metals and metal oxide nanoparticles. Mater. Sci. Eng. C. 44, 278–284 (2014).
-
Gold, K., Slay, B., Knackstedt, M. & Gaharwar, A. K. Antimicrobial activity of metal and metal-oxide nanoparticles. Adv. Ther. 1, 1700033 (2018).
-
Dizaj, S. M., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M. H. & Adibkia, K. Antimicrobial activity of metals and metal oxide nanoparticles. Mater. Sci. Eng. C. 44, 278–284 (2014).
-
Ebbensgaard, A. et al. Comparative antimicrobial activity of peptides against pathogenic bacteria. PLoS ONE 10, e0144611 (2015).
-
Moritz, M. & Geszke-Moritz, M. Advances in synthesis, immobilization and applications of antibacterial nanoparticles. Chem. Eng. J. 228, 596–613 (2013).
-
Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition in the microbial jungle. Nat. Rev. Microbiol. 8, 15–25 (2010).
-
Frei, A., Verderosa, A. D., Elliott, A. G., Zuegg, J. & Blaskovich, M. A. Metals to combat antimicrobial resistance. Nat. Rev. Chem. 7, 202–224 (2023).
-
Stojiljkovic, I., Evavold, B. D. & Kumar, V. Antimicrobial properties of porphyrins. Expert Opin. Invest. Drugs. 10, 309–320 (2001).
-
Yamano, K. & Kojima, W. Molecular functions of autophagy adaptors in ubiquitin-driven mitophagy. Biochim. Biophys. Acta Gen. Subj. 1865, 129972 (2021).
-
Ezzayani, K. et al. Magnesium(II) porphyrin complex: synthesis, biological evaluation and docking. J. Mol. Struct. 1287, 135702 (2023).
-
Monteiro, A. R., Neves, M. G. P. & Trindade, T. Graphene oxide functionalized with porphyrins: synthetic routes and bio-applications. ChemPlusChem 85, 1857–1880 (2020).
-
Bi, C. et al. Ag+-decorated PCN-222@graphene oxide–chitosan foam adsorbent for U(VI) recovery with antibacterial activity. Sep. Purif. Technol. 281, 119900 (2022).
-
Hu, Y. et al. Antioxidant activity of Inonotus obliquus polysaccharide and protection against chronic pancreatitis in mice. Int. J. Biol. Macromol. 87, 348–356 (2016).
-
Fu, X. et al. Graphene oxide as a nanofiller for polymer composites. Surf. Interfaces. 37, 102747 (2023).
-
Xu, C., Han, A., Virgil, S. C. & Reisman, S. E. Chemical synthesis of (+)-ryanodine and (+)-20-deoxyspiganthine. ACS Cent. Sci. 3, 278–282 (2017).
-
Khan, M. S., Abdelhamid, H. N. & Wu, H. F. NIR laser-mediated surface activation of graphene oxide nanoflakes for antibacterial, antifungal and wound-healing treatment. Colloids Surf. B Biointerfaces. 127, 281–291 (2015).
-
Mamun, M. M., Sorinolu, A. J., Munir, M. & Vejerano, E. P. Nanoantibiotics: functions and properties at the nanoscale to combat antibiotic resistance. Front. Chem. 9, 687660 (2021).
-
Xu, Y., Li, H., Li, X. & Liu, W. What happens when nanoparticles encounter bacterial antibiotic resistance?. Sci. Total Environ. 876, 162856 (2023).
-
Ghulam, A. N. et al. Graphene oxide materials: applications and toxicity on living organisms and environment. J. Funct. Biomater. 13, 77 (2022).
-
Palmieri, V. et al. Contradictory effects of graphene oxide against human pathogens. Nanotechnology 28, 152001 (2017).
-
Yasmeen, R., Singhaal, R., Bajju, G. D. & Sheikh, H. N. Tin porphyrin–graphene oxide hybrid composites as catalysts for 4-nitrophenol reduction. J. Chem. Sci. 134, 111 (2022).
-
Marcano, D. C. et al. Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010).
-
Rayati, S., Rezaie, S. & Nejabat, F. Mn(III)-porphyrin/graphene oxide nanocomposite for aerobic hydrocarbon oxidation. C. R. Chim. 21, 696–703 (2018).
-
Sah, U., Sharma, K., Chaudhri, N., Sankar, M. & Gopinath, P. Antimicrobial photodynamic therapy with SWCNT–porphyrin conjugates. Colloids Surf. B Biointerfaces. 162, 108–117 (2018).
-
Díez-Pascual, A. M. Antibacterial and antiviral applications of carbon-based polymeric nanocomposites. Int. J. Mol. Sci. 22, 10511 (2021).
-
Venkatramaiah, N. & Venkatesan, R. Optical and luminescence investigations of hydroxy-substituted porphyrins in borate glasses. Solid State Sci. 13, 616–624 (2011).
-
Kundan, S., Bajju, G. D., Gupta, D. & Roy, T. K. Axially ligated Zn(II) porphyrin complexes: Spectroscopic, computational and antibacterial studies. Russ. J. Inorg. Chem. 64, 1379–1395 (2019).
-
Saravanan, M. et al. Antibacterial and biocompatible porphyrin–metal decorated reduced graphene oxide. Surf. Interfaces. 46, 103932 (2024).
-
Alam, S. N., Sharma, N. & Kumar, L. Synthesis of graphene oxide by modified Hummers’ method and thermal reduction to rGO. Graphene. 6, 1 (2017).
-
Yasmeen, R., Ahmed, S., Bhat, A. R., Bajju, G. D. & Sheikh, H. N. Antimicrobial nanocomposites from graphene oxide functionalized with zinc porphyrin complexes. Inorg. Chim. Acta. 569, 122155 (2024).
-
Tene, T. et al. Mercury adsorption on oxidized graphenes. Nanomaterials. 12, 3025 (2022).
-
Yasmeen, R., Ahmed, S., Bhat, A. R., Bajju, G. D. & Sheikh, H. N. Antimicrobial nanocomposites from graphene oxide functionalized with zinc porphyrin complexes. Inorg. Chim. Acta. 569, 122155 (2024).
-
Meshram, P. et al. Isatin-based Schiff bases: synthesis, antibacterial activity, docking and pharmacokinetics. J. Mol. Struct. 1322, 140508 (2025).
-
Kumar, A. et al. Schiff-based Cu(II), Zn(II) and Pd(II) complexes: antimicrobial, DNA-binding and docking studies. J. Mol. Struct. 1315, 138695 (2024).
-
Gour, P. B. et al. Benzo[d]oxazole-2-thio and oxazolo[4,5-b]pyridine-2-thio derivatives: design, docking, pharmacokinetics and pharmacophore insights. J. Mol. Struct. 1333, 141705 (2025).
-
Bharathi, S., Mahendiran, D., Ahmed, S. & Rahiman, A. K. Silver(I), nickel(II) and copper(II) thiosemicarbazone–ibuprofen complexes: antiproliferative and docking studies. J. Trace Elem. Med. Biol. 79, 127211 (2023).
-
Ahmed, S., Mahendiran, D., Bhat, A. R. & Rahiman, A. K. Nickel(II) and copper(II) thiosemicarbazone–pefloxacin complexes: antiproliferative, docking and pharmacokinetics studies. Chem. Biodivers. 20, e202300702 (2023).
-
Raveena, Singh, M. P., Sengar, M. & Kumari, P. Synthesis of graphene oxide/porphyrin nanocomposite for photocatalytic degradation of crystal violet dye. Chem. Select. 8, e202203272 (2023).
-
Zheng, W., Shan, N., Yu, L. & Wang, X. UV–visible, fluorescence and EPR properties of porphyrins and metalloporphyrins. Dyes Pigm. 77, 153–159 (2008).
-
Dechan, P. & Bajju, G. D. Preparations of core H2O-bound 5,10,15,20-tetrakis-4-chlorophenyl porphyrin, P1, and O-methylation of phenol and its p-substituted analogues. ACS Omega 5, 17775–17786 (2020).
-
Dechan, P., Bajju, G. D., Sood, P. & Dar, U. A. Synthesis and single crystal structure of a new polymorph of 5,10,15,20-tetrakis-(4-chlorophenyl) porphyrin, H2TTPCl4: Spectroscopic investigation of aggregation of H2TTPCl4. Mol. Cryst. Liq. Cryst. 666, 79–93 (2018).
-
Huang, X., Nakanishi, K. & Berova, N. Porphyrins and metalloporphyrins: versatile circular dichroic reporter groups for structural studies. Chirality 12, 237–255 (2000).
-
George, R. C., Torimiro, N., Daramola, O. B. & Olajide, A. A. Zinc, tin and silver porphyrins (TPP, TCPP, TMPP, THPP, TPPS, TMPyP) as photosensitizers in antibacterial photodynamic therapy for chronic wounds: a screening study. Ethiop. J. Sci. Technol. 15, 187–207 (2022).
-
Taniguchi, M., Wu, Z., Sterling, C. D. & Lindsey, J. S. Digitization of print-based absorption and fluorescence spectra-extracting clarity from clutter. Proc. SPIE. 12398, 23–42 (2023).
-
Wolf, M. et al. Panchromatic light funneling through the synergy in hexabenzocoronene–(metallo)porphyrin–fullerene assemblies to realize the separation of charges. Chem. Sci. 11, 7123–7132 (2020).
-
Johra, F. T. & Jung, W. G. Effect of pH on the synthesis and characteristics of RGO–CdS nanocomposites. Appl. Surf. Sci. 317, 1015–1021 (2014).
-
Singhaal, R., Tashi, L., Devi, S. & Sheikh, H. N. Hybrid photoluminescent material from lanthanide fluoride and graphene oxide with strong luminescence intensity as a chemical sensor for mercury ions. New J. Chem. 46, 6528–6538 (2022).
-
Kumari, R., Sahai, A. & Goswami, N. Effect of nitrogen doping on structural and optical properties of ZnO nanoparticles. Prog. Nat. Sci. Mater. Int. 25, 300–309 (2015).
-
Rayati, S., Rezaie, S. & Nejabat, F. Mn(III)-porphyrin/graphene oxide nanocomposite as an efficient catalyst for the aerobic oxidation of hydrocarbons. C. R. Chim. 21, 696–703 (2018).
-
Rostami, M., Rafiee, L., Hassanzadeh, F., Dadrass, A. R. & Khodarahmi, G. A. Synthesis of some new porphyrins and their metalloderivatives as potential sensitizers in photodynamic therapy. Res. Pharm. Sci. 10, 504–513 (2015).
-
El-Khalafy, S. H., Hassanein, M. T., Alaskary, M. M. & Salahuddin, N. A. Synthesis and characterization of Co(II) porphyrin complex supported on chitosan/graphene oxide nanocomposite for efficient green oxidation and removal of Acid Orange 7 dye. Sci. Rep. 14, 17073 (2024).
-
Faiz, M. A., Azurahanim, C. C., Raba’ah, S. A. & Ruzniza, M. Z. Low cost and green approach in the reduction of graphene oxide using palm oil leaves extract for potential in industrial applications. Results Phys. 16, 102954 (2020).
-
Bhagat, M., Rajput, S., Arya, S., Khan, S. & Lehana, P. Biological and electrical properties of biosynthesized silver nanoparticles. Bull. Mater. Sci. 38, 1253–1258 (2015).
-
Zvyagina, A. I. et al. Layer-by-layer assembly of porphyrin-based metal–organic frameworks on solids decorated with graphene oxide. New J. Chem. 41, 948–957 (2017).
-
Wang, Y. et al. Hybrid of MoS2 and reduced graphene oxide: A lightweight and broadband electromagnetic wave absorber. ACS Appl. Mater. Interfaces. 7, 26226–26234 (2015).
-
Chen, Y. et al. A sensitive porphyrin/reduced graphene oxide electrode for simultaneous detection of guanine and adenine. J. Solid State Electrochem. 20, 2055–2062 (2016).
-
Christianson, D. W. Structural chemistry and biology of manganese metalloenzymes. Prog. Biophys. Mol. Biol. 67, 217–252 (1997).
-
Zhao, Q., Huang, C. & Li, F. Phosphorescent heavy-metal complexes for bioimaging. Chem. Soc. Rev. 40, 2508–2524 (2011).
-
Kargar, H., Ardakani, A. A., Tahir, M. N., Ashfaq, M. & Munawar, K. S. Synthesis, spectral characterization, crystal structure determination and antimicrobial activity of Ni(II), Cu(II) and Zn(II) complexes with the Schiff base ligand derived from 3,5-dibromosalicylaldehyde. J. Mol. Struct. 1229, 129842 (2021).
-
Naseem, T. & Waseem, M. A comprehensive review on the role of some important nanocomposites for antimicrobial and wastewater applications. Int. J. Environ. Sci. Technol. 19, 2221–2246 (2022).
-
Sundaram, B. & Ahmed, S. Molecular docking: a computational approach streamlining drug design. In Mol. Model. Docking Tech. Drug Discov. Des. 371–400 (2025).
-
Akter, N. et al. Acylated glucopyranosides: FTIR, NMR, FMO, MEP, molecular docking, dynamics simulation, ADMET and antimicrobial activity against bacterial and fungal pathogens. Chem. Phys. Impact. 9, 100700 (2024).
-
Kumar, N., Sarma, H. & Sastry, G. N. Repurposing of approved drug molecules for viral infectious diseases: A molecular modelling approach. J. Biomol. Struct. Dyn. 40, 8056–8072 (2022).
-
Maji, S., Badavath, V.N. & Ganguly, S. Drug repurposing and computational drug discovery for viral infections and coronavirus disease-2019 (COVID-19). In Drug Repurposing Comput. Drug Discov. 59–76 (2023).
-
Moshiri, J. et al. A targeted computational screen of the SWEETLEAD database reveals FDA-approved compounds with anti-dengue viral activity. MBio 11(6), 10–1128 (2020).
-
Winkler, D. A. Computational repurposing of drugs for viral diseases and current and future pandemics. J. Math. Chem. 62, 2844–2879 (2024).
