Graphene oxide functionalized metalloporphyrins as advanced antimicrobial nanomaterials with integrated synthesis, characterization and molecular docking evaluations

graphene-oxide-functionalized-metalloporphyrins-as-advanced-antimicrobial-nanomaterials-with-integrated-synthesis,-characterization-and-molecular-docking-evaluations
Graphene oxide functionalized metalloporphyrins as advanced antimicrobial nanomaterials with integrated synthesis, characterization and molecular docking evaluations

References

  1. Hutchings, M. I., Truman, A. W. & Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 51, 72–80 (2019).

    Google Scholar 

  2. Gillespie, S. H. Antibiotic resistance in the absence of selective pressure. Int. J. Antimicrob. Agents. 17, 171–176 (2001).

    Google Scholar 

  3. Amiri, N. et al. Two novel magnesium(II) meso-tetraphenylporphyrin coordination complexes: syntheses, structure elucidation, spectroscopy, photophysical properties and antibacterial activity. J. Solid State Chem. 258, 477–484 (2018).

    Google Scholar 

  4. Ezzayani, K. et al. Coordination polymer with magnesium porphyrin: synthesis, structure, photophysical properties and antibacterial activity. Inorg. Chim. Acta. 514, 119960 (2021).

    Google Scholar 

  5. Wang, Z. et al. Nanoporous porphyrin polymers for gas storage and separation. Macromolecules 45, 7413–7419 (2012).

    Google Scholar 

  6. Lvova, L. et al. SWCNTs modified with porphyrins for chemical sensing applications. Procedia Eng. 5, 1043–1046 (2010).

    Google Scholar 

  7. Fidalgo-Marijuan, A. et al. Heterogeneous catalysis by μ-O-[FeTCPP]₂ dimers: unusual superhyperfine EPR structure. Dalton Trans. 44, 213–222 (2015).

    Google Scholar 

  8. Fields, K. B. et al. Cobalt carbaporphyrin-catalyzed cyclopropanation. Chem. Commun. 47, 749–751 (2011).

    Google Scholar 

  9. Sautour, M. et al. Acid-functionalized porphyrins with antimicrobial activity against Gram-positive bacteria, yeasts and fungi. Bioorg. Med. Chem. 109, 117810 (2024).

    Google Scholar 

  10. Vzorov, A. N., Dixon, D. W., Trommel, J. S., Marzilli, L. G. & Compans, R. W. Inactivation of HIV-1 by porphyrins. Antimicrob. Agents Chemother. 46, 3917–3925 (2002).

    Google Scholar 

  11. Carré, V. et al. Fungicidal meso-arylglycosylporphyrins: influence of sugar substituents on yeast photo-damage. J. Photochem. Photobiol. B. 48, 57–62 (1999).

    Google Scholar 

  12. Dizaj, S. M., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M. H. & Adibkia, K. Antimicrobial activity of metals and metal oxide nanoparticles. Mater. Sci. Eng. C. 44, 278–284 (2014).

    Google Scholar 

  13. Gold, K., Slay, B., Knackstedt, M. & Gaharwar, A. K. Antimicrobial activity of metal and metal-oxide nanoparticles. Adv. Ther. 1, 1700033 (2018).

    Google Scholar 

  14. Dizaj, S. M., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M. H. & Adibkia, K. Antimicrobial activity of metals and metal oxide nanoparticles. Mater. Sci. Eng. C. 44, 278–284 (2014).

    Google Scholar 

  15. Ebbensgaard, A. et al. Comparative antimicrobial activity of peptides against pathogenic bacteria. PLoS ONE 10, e0144611 (2015).

    Google Scholar 

  16. Moritz, M. & Geszke-Moritz, M. Advances in synthesis, immobilization and applications of antibacterial nanoparticles. Chem. Eng. J. 228, 596–613 (2013).

    Google Scholar 

  17. Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition in the microbial jungle. Nat. Rev. Microbiol. 8, 15–25 (2010).

    Google Scholar 

  18. Frei, A., Verderosa, A. D., Elliott, A. G., Zuegg, J. & Blaskovich, M. A. Metals to combat antimicrobial resistance. Nat. Rev. Chem. 7, 202–224 (2023).

    Google Scholar 

  19. Stojiljkovic, I., Evavold, B. D. & Kumar, V. Antimicrobial properties of porphyrins. Expert Opin. Invest. Drugs. 10, 309–320 (2001).

    Google Scholar 

  20. Yamano, K. & Kojima, W. Molecular functions of autophagy adaptors in ubiquitin-driven mitophagy. Biochim. Biophys. Acta Gen. Subj. 1865, 129972 (2021).

    Google Scholar 

  21. Ezzayani, K. et al. Magnesium(II) porphyrin complex: synthesis, biological evaluation and docking. J. Mol. Struct. 1287, 135702 (2023).

    Google Scholar 

  22. Monteiro, A. R., Neves, M. G. P. & Trindade, T. Graphene oxide functionalized with porphyrins: synthetic routes and bio-applications. ChemPlusChem 85, 1857–1880 (2020).

    Google Scholar 

  23. Bi, C. et al. Ag+-decorated PCN-222@graphene oxide–chitosan foam adsorbent for U(VI) recovery with antibacterial activity. Sep. Purif. Technol. 281, 119900 (2022).

    Google Scholar 

  24. Hu, Y. et al. Antioxidant activity of Inonotus obliquus polysaccharide and protection against chronic pancreatitis in mice. Int. J. Biol. Macromol. 87, 348–356 (2016).

    Google Scholar 

  25. Fu, X. et al. Graphene oxide as a nanofiller for polymer composites. Surf. Interfaces. 37, 102747 (2023).

    Google Scholar 

  26. Xu, C., Han, A., Virgil, S. C. & Reisman, S. E. Chemical synthesis of (+)-ryanodine and (+)-20-deoxyspiganthine. ACS Cent. Sci. 3, 278–282 (2017).

    Google Scholar 

  27. Khan, M. S., Abdelhamid, H. N. & Wu, H. F. NIR laser-mediated surface activation of graphene oxide nanoflakes for antibacterial, antifungal and wound-healing treatment. Colloids Surf. B Biointerfaces. 127, 281–291 (2015).

    Google Scholar 

  28. Mamun, M. M., Sorinolu, A. J., Munir, M. & Vejerano, E. P. Nanoantibiotics: functions and properties at the nanoscale to combat antibiotic resistance. Front. Chem. 9, 687660 (2021).

    Google Scholar 

  29. Xu, Y., Li, H., Li, X. & Liu, W. What happens when nanoparticles encounter bacterial antibiotic resistance?. Sci. Total Environ. 876, 162856 (2023).

    Google Scholar 

  30. Ghulam, A. N. et al. Graphene oxide materials: applications and toxicity on living organisms and environment. J. Funct. Biomater. 13, 77 (2022).

    Google Scholar 

  31. Palmieri, V. et al. Contradictory effects of graphene oxide against human pathogens. Nanotechnology 28, 152001 (2017).

    Google Scholar 

  32. Yasmeen, R., Singhaal, R., Bajju, G. D. & Sheikh, H. N. Tin porphyrin–graphene oxide hybrid composites as catalysts for 4-nitrophenol reduction. J. Chem. Sci. 134, 111 (2022).

    Google Scholar 

  33. Marcano, D. C. et al. Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010).

    Google Scholar 

  34. Rayati, S., Rezaie, S. & Nejabat, F. Mn(III)-porphyrin/graphene oxide nanocomposite for aerobic hydrocarbon oxidation. C. R. Chim. 21, 696–703 (2018).

    Google Scholar 

  35. Sah, U., Sharma, K., Chaudhri, N., Sankar, M. & Gopinath, P. Antimicrobial photodynamic therapy with SWCNT–porphyrin conjugates. Colloids Surf. B Biointerfaces. 162, 108–117 (2018).

    Google Scholar 

  36. Díez-Pascual, A. M. Antibacterial and antiviral applications of carbon-based polymeric nanocomposites. Int. J. Mol. Sci. 22, 10511 (2021).

    Google Scholar 

  37. Venkatramaiah, N. & Venkatesan, R. Optical and luminescence investigations of hydroxy-substituted porphyrins in borate glasses. Solid State Sci. 13, 616–624 (2011).

    Google Scholar 

  38. Kundan, S., Bajju, G. D., Gupta, D. & Roy, T. K. Axially ligated Zn(II) porphyrin complexes: Spectroscopic, computational and antibacterial studies. Russ. J. Inorg. Chem. 64, 1379–1395 (2019).

    Google Scholar 

  39. Saravanan, M. et al. Antibacterial and biocompatible porphyrin–metal decorated reduced graphene oxide. Surf. Interfaces. 46, 103932 (2024).

    Google Scholar 

  40. Alam, S. N., Sharma, N. & Kumar, L. Synthesis of graphene oxide by modified Hummers’ method and thermal reduction to rGO. Graphene. 6, 1 (2017).

    Google Scholar 

  41. Yasmeen, R., Ahmed, S., Bhat, A. R., Bajju, G. D. & Sheikh, H. N. Antimicrobial nanocomposites from graphene oxide functionalized with zinc porphyrin complexes. Inorg. Chim. Acta. 569, 122155 (2024).

    Google Scholar 

  42. Tene, T. et al. Mercury adsorption on oxidized graphenes. Nanomaterials. 12, 3025 (2022).

    Google Scholar 

  43. Yasmeen, R., Ahmed, S., Bhat, A. R., Bajju, G. D. & Sheikh, H. N. Antimicrobial nanocomposites from graphene oxide functionalized with zinc porphyrin complexes. Inorg. Chim. Acta. 569, 122155 (2024).

    Google Scholar 

  44. Meshram, P. et al. Isatin-based Schiff bases: synthesis, antibacterial activity, docking and pharmacokinetics. J. Mol. Struct. 1322, 140508 (2025).

    Google Scholar 

  45. Kumar, A. et al. Schiff-based Cu(II), Zn(II) and Pd(II) complexes: antimicrobial, DNA-binding and docking studies. J. Mol. Struct. 1315, 138695 (2024).

    Google Scholar 

  46. Gour, P. B. et al. Benzo[d]oxazole-2-thio and oxazolo[4,5-b]pyridine-2-thio derivatives: design, docking, pharmacokinetics and pharmacophore insights. J. Mol. Struct. 1333, 141705 (2025).

    Google Scholar 

  47. Bharathi, S., Mahendiran, D., Ahmed, S. & Rahiman, A. K. Silver(I), nickel(II) and copper(II) thiosemicarbazone–ibuprofen complexes: antiproliferative and docking studies. J. Trace Elem. Med. Biol. 79, 127211 (2023).

    Google Scholar 

  48. Ahmed, S., Mahendiran, D., Bhat, A. R. & Rahiman, A. K. Nickel(II) and copper(II) thiosemicarbazone–pefloxacin complexes: antiproliferative, docking and pharmacokinetics studies. Chem. Biodivers. 20, e202300702 (2023).

    Google Scholar 

  49. Raveena, Singh, M. P., Sengar, M. & Kumari, P. Synthesis of graphene oxide/porphyrin nanocomposite for photocatalytic degradation of crystal violet dye. Chem. Select. 8, e202203272 (2023).

    Google Scholar 

  50. Zheng, W., Shan, N., Yu, L. & Wang, X. UV–visible, fluorescence and EPR properties of porphyrins and metalloporphyrins. Dyes Pigm. 77, 153–159 (2008).

    Google Scholar 

  51. Dechan, P. & Bajju, G. D. Preparations of core H2O-bound 5,10,15,20-tetrakis-4-chlorophenyl porphyrin, P1, and O-methylation of phenol and its p-substituted analogues. ACS Omega 5, 17775–17786 (2020).

    Google Scholar 

  52. Dechan, P., Bajju, G. D., Sood, P. & Dar, U. A. Synthesis and single crystal structure of a new polymorph of 5,10,15,20-tetrakis-(4-chlorophenyl) porphyrin, H2TTPCl4: Spectroscopic investigation of aggregation of H2TTPCl4. Mol. Cryst. Liq. Cryst. 666, 79–93 (2018).

    Google Scholar 

  53. Huang, X., Nakanishi, K. & Berova, N. Porphyrins and metalloporphyrins: versatile circular dichroic reporter groups for structural studies. Chirality 12, 237–255 (2000).

    Google Scholar 

  54. George, R. C., Torimiro, N., Daramola, O. B. & Olajide, A. A. Zinc, tin and silver porphyrins (TPP, TCPP, TMPP, THPP, TPPS, TMPyP) as photosensitizers in antibacterial photodynamic therapy for chronic wounds: a screening study. Ethiop. J. Sci. Technol. 15, 187–207 (2022).

    Google Scholar 

  55. Taniguchi, M., Wu, Z., Sterling, C. D. & Lindsey, J. S. Digitization of print-based absorption and fluorescence spectra-extracting clarity from clutter. Proc. SPIE. 12398, 23–42 (2023).

    Google Scholar 

  56. Wolf, M. et al. Panchromatic light funneling through the synergy in hexabenzocoronene–(metallo)porphyrin–fullerene assemblies to realize the separation of charges. Chem. Sci. 11, 7123–7132 (2020).

    Google Scholar 

  57. Johra, F. T. & Jung, W. G. Effect of pH on the synthesis and characteristics of RGO–CdS nanocomposites. Appl. Surf. Sci. 317, 1015–1021 (2014).

    Google Scholar 

  58. Singhaal, R., Tashi, L., Devi, S. & Sheikh, H. N. Hybrid photoluminescent material from lanthanide fluoride and graphene oxide with strong luminescence intensity as a chemical sensor for mercury ions. New J. Chem. 46, 6528–6538 (2022).

    Google Scholar 

  59. Kumari, R., Sahai, A. & Goswami, N. Effect of nitrogen doping on structural and optical properties of ZnO nanoparticles. Prog. Nat. Sci. Mater. Int. 25, 300–309 (2015).

    Google Scholar 

  60. Rayati, S., Rezaie, S. & Nejabat, F. Mn(III)-porphyrin/graphene oxide nanocomposite as an efficient catalyst for the aerobic oxidation of hydrocarbons. C. R. Chim. 21, 696–703 (2018).

    Google Scholar 

  61. Rostami, M., Rafiee, L., Hassanzadeh, F., Dadrass, A. R. & Khodarahmi, G. A. Synthesis of some new porphyrins and their metalloderivatives as potential sensitizers in photodynamic therapy. Res. Pharm. Sci. 10, 504–513 (2015).

    Google Scholar 

  62. El-Khalafy, S. H., Hassanein, M. T., Alaskary, M. M. & Salahuddin, N. A. Synthesis and characterization of Co(II) porphyrin complex supported on chitosan/graphene oxide nanocomposite for efficient green oxidation and removal of Acid Orange 7 dye. Sci. Rep. 14, 17073 (2024).

    Google Scholar 

  63. Faiz, M. A., Azurahanim, C. C., Raba’ah, S. A. & Ruzniza, M. Z. Low cost and green approach in the reduction of graphene oxide using palm oil leaves extract for potential in industrial applications. Results Phys. 16, 102954 (2020).

    Google Scholar 

  64. Bhagat, M., Rajput, S., Arya, S., Khan, S. & Lehana, P. Biological and electrical properties of biosynthesized silver nanoparticles. Bull. Mater. Sci. 38, 1253–1258 (2015).

    Google Scholar 

  65. Zvyagina, A. I. et al. Layer-by-layer assembly of porphyrin-based metal–organic frameworks on solids decorated with graphene oxide. New J. Chem. 41, 948–957 (2017).

    Google Scholar 

  66. Wang, Y. et al. Hybrid of MoS2 and reduced graphene oxide: A lightweight and broadband electromagnetic wave absorber. ACS Appl. Mater. Interfaces. 7, 26226–26234 (2015).

    Google Scholar 

  67. Chen, Y. et al. A sensitive porphyrin/reduced graphene oxide electrode for simultaneous detection of guanine and adenine. J. Solid State Electrochem. 20, 2055–2062 (2016).

    Google Scholar 

  68. Christianson, D. W. Structural chemistry and biology of manganese metalloenzymes. Prog. Biophys. Mol. Biol. 67, 217–252 (1997).

    Google Scholar 

  69. Zhao, Q., Huang, C. & Li, F. Phosphorescent heavy-metal complexes for bioimaging. Chem. Soc. Rev. 40, 2508–2524 (2011).

    Google Scholar 

  70. Kargar, H., Ardakani, A. A., Tahir, M. N., Ashfaq, M. & Munawar, K. S. Synthesis, spectral characterization, crystal structure determination and antimicrobial activity of Ni(II), Cu(II) and Zn(II) complexes with the Schiff base ligand derived from 3,5-dibromosalicylaldehyde. J. Mol. Struct. 1229, 129842 (2021).

    Google Scholar 

  71. Naseem, T. & Waseem, M. A comprehensive review on the role of some important nanocomposites for antimicrobial and wastewater applications. Int. J. Environ. Sci. Technol. 19, 2221–2246 (2022).

    Google Scholar 

  72. Sundaram, B. & Ahmed, S. Molecular docking: a computational approach streamlining drug design. In Mol. Model. Docking Tech. Drug Discov. Des. 371–400 (2025).

  73. Akter, N. et al. Acylated glucopyranosides: FTIR, NMR, FMO, MEP, molecular docking, dynamics simulation, ADMET and antimicrobial activity against bacterial and fungal pathogens. Chem. Phys. Impact. 9, 100700 (2024).

    Google Scholar 

  74. Kumar, N., Sarma, H. & Sastry, G. N. Repurposing of approved drug molecules for viral infectious diseases: A molecular modelling approach. J. Biomol. Struct. Dyn. 40, 8056–8072 (2022).

    Google Scholar 

  75. Maji, S., Badavath, V.N. & Ganguly, S. Drug repurposing and computational drug discovery for viral infections and coronavirus disease-2019 (COVID-19). In Drug Repurposing Comput. Drug Discov. 59–76 (2023).

  76. Moshiri, J. et al. A targeted computational screen of the SWEETLEAD database reveals FDA-approved compounds with anti-dengue viral activity. MBio 11(6), 10–1128 (2020).

    Google Scholar 

  77. Winkler, D. A. Computational repurposing of drugs for viral diseases and current and future pandemics. J. Math. Chem. 62, 2844–2879 (2024).

    Google Scholar 

Download references