Green zinc oxide nanoparticles improve zinc bioavailability and mitigate high temperature stress in rice

green-zinc-oxide-nanoparticles-improve-zinc-bioavailability-and-mitigate-high-temperature-stress-in-rice
Green zinc oxide nanoparticles improve zinc bioavailability and mitigate high temperature stress in rice

References

  1. IPCC, Climate Change: The Physical Science. (accessed December 27, 2024). (2014).

  2. Abdelrahman, M., El-Sayed, M., Jogaiah, S., Burritt, D. J. & Tran, L. S. P. The stay-green trait and phytohormone signaling networks in plants under heat stress. Plant. Cell. Rep. 36, 1009–1025. 10.1007 /s00299-017-2119-y (2017).

    Google Scholar 

  3. Parker, L. E., McElrone, A. J., Ostoja, S. M. & Forrestel, E. J. Extreme heat effects on perennial crops and strategies for sustaining future production. Plant Sci. 295, 110397. https://doi.org/10.1016/j.plantsci.2019.110397 (2020).

    Google Scholar 

  4. Banerjee, A. & Roychoudhury, A. Rice grain quality and abiotic stress: Genomics and biotechnological perspectives, in Rice research for quality improvement: Genomics and genetic engineering: Volume 1: Breeding techniques and abiotic stress tolerance. Ed. Roychoudhury, A. (Singapore: Springer), 747–752. https://doi.org/10.1007/978-981-15-4120-9_30 (2020).

  5. Stephen, K., Beena, R., Kiran, A. G., Shanija, S. & Saravanan, R. Changes in physiological traits and expression of key genes involved in sugar signaling pathway in rice under high temperature stress. 3 Biotech. 12 (9), 183. 10.1007 /s13205-022-03242-y (2022).

    Google Scholar 

  6. Radha, B. et al. Physiological and molecular implications of multiple abiotic stresses on yield and quality of rice. Front. Plant. Sci. 13, 996514. https://doi.org/10.3389/fpls.2022.996514 (2023).

    Google Scholar 

  7. Manikanta, C. L. N., Beena, R. & Rejeth, R. Root anatomical traits influence water stress tolerance in rice (Oryza sativa L). J. Crop Sci. Biotechnol. https://doi.org/10.1007/s12892-022-00142-8 (2022).

    Google Scholar 

  8. Beena, R., Vighneswaran, V. & Narayankutty, M. C. Evaluation of rice genotypes for acquired thermo-tolerance using temperature induction response (TIR) technique. Oryza -An Int. J. Rice. 55 (2), 285–291. https://doi.org/10.5958/2249-5266.2018.00035.8 (2018).

    Google Scholar 

  9. Zhao, J., Lu, Z., Wang, L. & Jin, B. Plant responses to heat stress: physiology, transcription, noncoding RNAs, and epigenetics. Int. J. Mol. Sci. 22 (1), 117. https://doi.org/10.3390/ijms22010117 (2020).

    Google Scholar 

  10. Ali, A. et al. Molecular characterization and varietal identification for multiple abiotic stress tolerance in rice (Oryza sativa L). Oryza -An Int. J. Rice. 59 (1), 140–115. https://doi.org/10.35709/ory2022.59.1.7 (2022).

    Google Scholar 

  11. Das, K., Roy, P. & Tiwari, R. K. S. Biofortification of rice, an impactful strategy for nutritional security: current perspectives and future prospect. Plant-Based Diet. 110460. https://doi.org/10.5772/intechopen (2023).

  12. Sailaja, B. et al. Integrated physiological, biochemical, and molecular analysis identifies important traits and mechanisms associated with differential response of rice genotypes to elevated temperature. Front. Plant. Sci. 6, 1044. https://doi.org/10.3389/fpls.2015.01044 (2015).

    Google Scholar 

  13. Song, Y. et al. The negative impact of increasing temperatures on rice yields in Southern China. Sci. Total Environ. 820, 153262. https://doi.org/10.1016/j.scitotenv.2022.153262 (2022).

    Google Scholar 

  14. Petruzzelli, G., Pezzarossa, B. & Pedron, F. The fate of chemical contaminants in soil with a view to potential risk to human health: A review. Environments 12 (6), 183. https://doi.org/10.3390/environments12060183 (2025).

    Google Scholar 

  15. Qiu, J. et al. The application of zinc oxide nanoparticles: an effective strategy to protect rice from rice blast and abiotic stresses. Environ. Pollut. 331, 121925. https://doi.org/10.1016/j.envpol.2023.121925 (2023).

    Google Scholar 

  16. Ashwini, M. N. et al. Comparative impact of seed priming with zinc oxide nanoparticles and zinc sulphate on biocompatibility, zinc uptake, germination, seedling vitality, and antioxidant modulation in groundnut. J. Nanopart. Res. 26, 235. https://doi.org/10.1007/s11051-024-06141-w (2024).

    Google Scholar 

  17. Ma, X., Geiser-Lee, J., Deng, Y. & Kolmakov, A. Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci. Total Environ. 408 (16), 3053–3061. https://doi.org/10.1016/j.scitotenv.2010.03.031 (2010).

    Google Scholar 

  18. Hossain, Z., Mustafa, G. & Komatsu, S. Plant responses to nanoparticle stress. Int. J. Mol. Sci. 16 (11), 26644–26653. https://doi.org/10.3390/ijms161125980 (2015).

    Google Scholar 

  19. Dimkpa, C. O. et al. Facile coating of Urea with low-dose ZnO nanoparticles promotes wheat performance and enhances Zn uptake under drought stress. Front. Plant. Sci. 11, 168. https://doi.org/10.3389/fpls.2020.00168 (2020).

    Google Scholar 

  20. Hussain, A. et al. Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environ. Pollu. 242, 1518–1526. https://doi.org/10.1016/j.envpol.2018.08.036 (2018).

    Google Scholar 

  21. Irato, P. & Santovito, G. Enzymatic and non-enzymatic molecules with antioxidant function. Antioxidants 10 (4), 579. https://doi.org/10.3390/antiox10040579 (2021).

    Google Scholar 

  22. Hasanuzzaman, M. et al. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9 (8). https://doi.org/10.3390/antiox9080681 (2020).

  23. Babu, S. et al. Nanofertilizers for agricultural and environmental sustainability. Chemosphere 292, 133451. https://doi.org/10.1016/ j. chemosphere.2021.133451 (2022).

    Google Scholar 

  24. Qiu, J. et al. The application of zinc oxide nanoparticles: an effective strategy to protect rice from rice blast and abiotic stresses. Environ Pollu 121925. https://doi.org/10.1016/j.envpol.2023.121925 (2023).

    Google Scholar 

  25. Mazhar, Z. et al. Efficacy of ZnO nanoparticles in Zn fortification and partitioning of wheat and rice grains under salt stress. Sci. Rep. 13 (1). https://doi.org/10.1038/s41598-022-26039-8 (2023).

  26. Yusefi, Tanha, E., Fallah, S., Pokhrel, L. R. & Rostamnejadi, A. Addressing global food insecurity: Soil-applied zinc oxide nanoparticles promote yield attributes and seed nutrient quality in Glycine max L. Sci. Total Environ. 876, 162762. https://doi.org/10.1016/j.scitotenv.2023.162762 (2023).

    Google Scholar 

  27. Brouns, F. Phytic acid and whole grains for health controversy. Nutrients 14 (1), 25. https://doi.org/10.3390/nu14010025 (2022).

    Google Scholar 

  28. Yadav, A. et al. Zinc oxide and ferric oxide nanoparticles combination increase plant growth, yield, and quality of soybean under semiarid region. Chemosphere 141432 https://doi.org/10.1016/j.chemosphere.2024.141432 (2024).

  29. Liu, C., Zhou, H. & Zhou, J. The applications of nanotechnology in crop production. Molecule 26 (23), 7070. https://doi.org/10.3390/molecules26237070 (2021).

    Google Scholar 

  30. Schmidt, W., Thomine, S., Buckhout, T. J. & Editorial Iron nutrition and interactions in plants. Front. Plant. Sci. 10, 1670. https://doi.org/10.3389/fpls.2019.01670 (2020).

    Google Scholar 

  31. Singh, A., Sengar, R. S., Rajput, V. D., Minkina, T. & Singh, R. K. Zinc oxide nanoparticles improve salt tolerance in rice seedlings by improving physiological and biochemical indices. Agriculture 12 (7), 1014. https://doi.org/10.3390/agriculture12071014 (2022).

    Google Scholar 

  32. Wang, X. P., Li, Q. Q., Pei, Z. M. & Wang, S. C. Effects of zinc oxide nanoparticles on the growth, photosynthetic traits, and antioxidative enzymes in tomato plants. Biol. Plant. 62, 801–808. https://doi.org/10.1007/s10535-018-0813-4 (2018).

    Google Scholar 

  33. Xu, P. et al. Exogenous Trehalose can reduce the loss of rice yields under high temperature stress at the flowering stage by improving the carbohydrate metabolism and photosynthesis capacity of flag leaves. J. Plant. Growth Regul. 44 (6), 2892–2909. https://doi.org/10.1007/s00344-024-11582-7 (2025).

    Google Scholar 

  34. Chen, J. H. et al. Regulation of Calvin–Benson cycle enzymes under high temperature stress. Abiotech 3 (1), 65–77. https://doi.org/10.1007/s42994-022-00068-3 (2022).

    Google Scholar 

  35. Lakshmi, G., Beena, R., Soni, K. B., Viji, M. M. & Jha, U. C. Exogenously applied plant growth regulator protects rice from heat-induced damage by modulating plant defense mechanism. JCSB 26 (1), 63–75. https://doi.org/10.1007/s12892-022-00162-4 (2023).

    Google Scholar 

  36. Shrestha, S., Mahat, J., Shrestha, J., KC, M. & Paudel, K. Influence of high-temperature stress on rice growth and development. A review. Heliyon, 8(12). https://doi.org/10.1016/j.heliyon.2022.e12651 (2022).

  37. Li, Y., Zhou, L., Wang, S., Chi, Y. & Chen, J. Leaf temperature and vapour pressure deficit (VPD) driving stomatal conductance and biochemical processes of leaf photosynthetic rate in a subtropical evergreen coniferous plantation. Sustainability 10 (11), 4063. https://doi.org/10.3390/su10114063 (2018).

    Google Scholar 

  38. Hu, S., Ding, Y. & Zhu, C. Sensitivity and responses of chloroplasts to heat stress in plants. Front. Plant. Sci. 11, 375. https://doi.org/10.3389/fpls.2020.00375 (2020).

    Google Scholar 

  39. Chen, M. et al. Hyperspectral characteristics and chlorophyll content inversion of Japonica rice under elevated CO2 and temperature with different nitrogen levels. Eur. J. Agron. 172, 127872. https://doi.org/10.1016/j.eja.2025.127872 (2026).

    Google Scholar 

  40. Guo, S. et al. Zinc oxide nanoparticles cooperate with the phyllosphere to promote grain yield and nutritional quality of rice under heatwave stress. PNAS 121 (46), e2414822121. https://doi.org/10.1073/pnas.2414822121 (2024).

    Google Scholar 

  41. Alidoust, D. & Isoda, A. Effect of γFe 2O3 nanoparticles on photosynthetic characteristic of soybean (Glycine max (L.) Merr.): foliar spray versus soil amendment. Acta Physiol. Plant. 35, 3365–3375. https://doi.org/10.1007/s11738-013-1369-8 (2013).

    Google Scholar 

  42. Al-Zahrani, H. S., Alharby, H. F. & Fahad, S. Antioxidative defense system, hormones, and metabolite accumulation in different plant parts of two contrasting rice cultivars as influenced by plant growth regulators under heat stress. Front. Plant. Sci. 13, 911846. https://doi.org/10.3389/fpls.2022.911846 (2022).

    Google Scholar 

  43. Fahad, S. et al. Crop production under drought and heat stress: plant responses and management options. Fron Plant. Sci. 1147 https://doi.org/10.3389/fpls.2017.01147 (2017).

  44. Garcia-Gomez, C., Obrador, A., González, D., Babín, M. & Fernández, M. D. Comparative effect of ZnO NPs, ZnO bulk and ZnSO4 in the antioxidant defences of two plant species growing in two agricultural soils under greenhouse conditions. Sci. Total Environ. 589, 11–24. https://doi.org/10.1016/j.scitotenv.2017.02.153 (2017).

    Google Scholar 

  45. Yusefi, Tanha, E., Fallah, S., Rostamnejadi, A. & Pokhrel, L. R. Zinc oxide nanoparticles (ZnONPs) as a novel nanofertilizer: Influence on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Sci. Total Environ. 738, 140240.https://doi.org/10.1016/j.scitotenv.2020.140240 (2020).

  46. Bhat, J. A. et al. Defense interplay of the zinc-oxide nanoparticles and melatonin in alleviating the arsenic stress in soybean (Glycine max L). Chemosphere 288, 132471. https://doi.org/10.1016/j.chemosphere.2021.132471 (2022).

    Google Scholar 

  47. Xiong, D. et al. Sufficient leaf transpiration and nonstructural carbohydrates are beneficial for high-temperature tolerance in three rice (Oryza sativa L) cultivars and two nitrogen treatments. Funct. Plant. Biol. 42 (4), 347–356. https://doi.org/10.1071/FP14166 (2014).

    Google Scholar 

  48. Zhang, M. et al. Strategies for indica rice adapted to high-temperature stress in the middle and lower reaches of the Yangtze river. Fron Plant. Sci. 13, 1081807. https://doi.org/10.3389/fpls.2022.1081807 (2023).

    Google Scholar 

  49. Cai, G. & Ahmed, M. A. The role of root hairs in water uptake: recent advances and future perspectives. J. Exp. Bot. 73 (11), 3330–3338. https://doi.org/10.1093/jxb/erac114 (2022).

    Google Scholar 

  50. Kumar, J. A. et al. A focus to green synthesis of metal/metal based oxide nanoparticles: various mechanisms and applications towards ecological approach. J Clean. Prod. 324, 129198. https://doi.org/10.1016/j.jclepro.2021.129198 (2021).

    Google Scholar 

  51. Ravi, B., Duraisamy, P. & Marimuthu, T. A novel integrated circular economy approach in green synthesis of copper oxide nanoparticles from waste printed circuit boards and utilization of its residue for Preparation of carbon engulfed nano polymer membrane. J. Clean. Prod. 383, 135457. https://doi.org/10.1016/j.jclepro.2022.135457 (2023).

    Google Scholar 

  52. Maqbool, S., Saeed, F., Raza, A., Rasheed, A. & He, Z. Association of root hair length and density with yield-related traits and expression patterns of TaRSL4 underpinning root hair length in spring wheat. Plants 11 (17), 2235. https://doi.org/10.3390/plants11172235 (2022).

    Google Scholar 

  53. Umarani, E., Hemalatha, V., Saritha, A. & Ramanjaneyulu, A. V. Impact of high temperature stress in rice. Inter J. Econ. Plants. 7 (3), 108–110. https://doi.org/10.23910/2/2020.0366 (2020).

    Google Scholar 

  54. Liu, W. et al. Effects of high temperature on rice grain development and quality formation based on proteomics comparative analysis under field warming. Front. Plant. Sci. 12, 746180. https://doi.org/10.3389/fpls.2021.746180 (2021).

    Google Scholar 

  55. Zhang, H. et al. The effect of zinc oxide nanoparticles for enhancing rice (Oryza sativa L.) yield and quality. Agriculture 11 (12), 1247. https://doi.org/10.3390/agriculture11121247 (2021).

    Google Scholar 

  56. Jaiswal, D. K. et al. Bio-fortification of minerals in crops: current scenario and future prospects for sustainable agriculture and human health. Plant. Growth Regul. 98 (1), 5–22. https://doi.org/10.1007/s10725-022-00847-4 (2022).

    Google Scholar 

  57. Hamzah Saleem, M., Usman, K., Rizwan, M., Jabri, A., Alsafran, M. & H. & Functions and strategies for enhancing zinc availability in plants for sustainable agriculture. Front. Plant. Sci. 13, 1033092. https://doi.org/10.3389/fpls.2022.1033092 (2022).

    Google Scholar 

  58. Rasool, A. et al. Biogenic synthesis and characterization of ZnO nanoparticles for degradation of synthetic dyes: A sustainable environmental cleaner approach. J. Clean. Prod. 398, 36616. https://doi.org/10.1016/j.jclepro.2023.136616 (2023).

    Google Scholar 

  59. Nazir, M. A. et al. Zinc oxide nano-fertilizer differentially effect on morphological and physiological identity of redox enzymes and biochemical attributes in wheat (Triticum aestivum L). Sci. Rep. 14, 1309. https://doi.org/10.1038/s41598-024-63987-9 (2024).

    Google Scholar 

  60. Hasanuzzaman, M., Nahar, K. & Fujita, M. Plant response to salt stress and role of exogenous protectants to mitigate salt-Induced damages. In Ecophysiology and Responses of Plants Under Salt Stress (eds Ahmad, P. et al.) (Springer, 2013). https://doi.org/10.1007/978-1-4614-4747-4_2.

    Google Scholar 

  61. Chugh, G., Siddique, K. H. & Solaiman, Z. M. Nanobiotechnology for agriculture: smart technology for combating nutrient deficiencies with nanotoxicity challenges. Sustainability 13 (4), 1781. https://doi.org/10.3390/su13041781 (2021).

    Google Scholar 

  62. Yang, G. et al. Effect of ZnO nanoparticles on the productivity, Zn biofortification, and nutritional quality of rice in a life cycle study. Plant. Physi Biochem. 163, 87–94. https://doi.org/10.1016/j.plaphy.2021.03.053 (2021).

    Google Scholar 

  63. Saha, S. et al. Agronomic biofortification of zinc in rice: influence of cultivars and zinc application methods on grain yield and zinc bioavailability. Field Crops Res. 210, 52–60. https://doi.org/10.1016/j.fcr.2017.05.023 (2017).

    Google Scholar 

  64. Al Hasan, A. et al. Dietary phytate intake inhibits the bioavailability of iron and calcium in the diets of pregnant women in rural bangladesh: a cross-sectional study. BMC Nutr. 2, 1–10. https://doi.org/10.1186/s40795-016-0064-8 (2016).

    Google Scholar 

  65. Elemike, E. E., Uzoh, I. M., Onwudiwe, D. C. & Babalola, O. O. The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Appl. Sci. 9 (3), 499. https://doi.org/10.3390/app9030499 (2019).

    Google Scholar 

  66. Saha, R. et al. Influence of various synthesis methods on the ZnO nanoparticles properties made using the bark extract of terminalia Arjuna. Mater. Chem. Phys. 209, 208–216. https://doi.org/10.1016/j.matchemphys.2018.01.023 (2018).

    Google Scholar 

  67. Gomez, K. A. & Gomez, A. Statistical Procedure for Agricultural Research 2nd ed. Willey (1984).

  68. Wellburn, A. R. The spectral determination of chlorophylls a and b, as well as total carotenoids using various solvents with spectrophotometers with spectrophotometers of different resolution. J. Plant. Physiol. 144 (3), 307–313. https://doi.org/10.1016/S0176-1617(11)81192-2 (1994).

    Google Scholar 

  69. Lowry, O., Rosebrough, N., Farr, A. L. & Randall, R. Protein measurement with the Folin phenol reagent. J. Biol. Chemis. 193 (1), 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6 (1976).

    Google Scholar 

  70. Aebi, H. Catalase in vitro. In Methods in Enzymology Vol. 105 (eds Sies, H. et al.) 121–126 (Academic, 1984).

  71. Beyer, W. F. Jr & Fridovich, I. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal. Biochem. 161 (2), 559–566. https://doi.org/10.1016/0003-2697(87)90489-1 (1987).

  72. Arsenault, J. L., Poulcur, S., Messier, C., Guay, R. & WinRHlZO a root-measuring system with a unique overlap correction method. Hortic. Sci. 30(4), 906 D-906. https://doi.org/10.21273/HORTSCI.30.4.906D (1995).

  73. Jackson, M. L. Soil Chemical Analysis. Prentice Hall of India, New Delhi. 41–330 (1973).

  74. Vaintraub, I. A. & Lapteva, N. A. Colorimetric determination of phytate in unpurified extracts of seeds and the products of their processing. Analy Biochem. 175 (1), 227–230. https://doi.org/10.1016/0003-2697(88)90382-x (1988).

    Google Scholar 

  75. Carneiro, J. M. T., Zagatto, E. A. G., Santos, J. L. M. & Lima, J. L.F.C. Spectrophotometric determination of phytic acid in plant extracts using a multi-pumping flow system. Analyt Chimi Acta. 474 (1–2), 161–166. https://doi.org/10.1016/S0003-2670(02)01008-5 (2002).

    Google Scholar 

  76. Wang, S. et al. Foliar spraying of ZnO nanoparticles enhanced the Yield, Quality, and zinc enrichment of rice grains. Foods 12 (19), 3677. https://doi.org/10.3390/foods12193677 (2023).

    Google Scholar 

Download references