Harnessing epitope reciprocity and multimeric epitope density for a novel multiepitope vaccine design against Acinetobacter baumannii

harnessing-epitope-reciprocity-and-multimeric-epitope-density-for-a-novel-multiepitope-vaccine-design-against-acinetobacter-baumannii
Harnessing epitope reciprocity and multimeric epitope density for a novel multiepitope vaccine design against Acinetobacter baumannii

References

  1. Marino, A. et al. Unveiling the secrets of acinetobacter baumannii: resistance, current treatments, and future innovations. Int. J. Mol. Sci. 25, 6814 (2024).

    Google Scholar 

  2. Hammoudi Halat, D. & Ayoub Moubareck, C. Hospital-acquired and ventilator-associated pneumonia caused by multidrug-resistant Gram-negative pathogens: Understanding epidemiology, resistance patterns, and implications with COVID-19 [version 2; peer review: 2 approved]. F1000Research 12 https://doi.org/10.12688/f1000research.129080.2 (2024).

  3. Hessami, A. et al. In Silico design of a novel hybrid epitope-based antigen harboring highly exposed Immunogenic peptides of BamA, OmpA, and Omp34 against acinetobacter baumannii. Int. Immunopharmacol. 142, 113066. https://doi.org/10.1016/j.intimp.2024.113066 (2024).

    Google Scholar 

  4. Mansouri, M., Sadeghpoor, M., Jahangiri, A., Ghaini, M. H. & Rasooli, I. Enhanced Immunoprotection against acinetobacter baumannii infection: synergistic effects of bap and BauA in a murine model. Immunol. Lett. 262, 18–26. https://doi.org/10.1016/j.imlet.2023.08.004 (2023).

    Google Scholar 

  5. Singh, S., Singh, S., Trivedi, M. & Dwivedi, M. An insight into MDR acinetobacter baumannii infection and its pathogenesis: potential therapeutic targets and challenges. Microb. Pathog. 192, 106674. https://doi.org/10.1016/j.micpath.2024.106674 (2024).

    Google Scholar 

  6. Li, C. et al. Outer membrane vesicles generated by an exogenous bacteriophage lysin and protection against acinetobacter baumannii infection. J. Nanobiotechnol. 22, 273. https://doi.org/10.1186/s12951-024-02553-x (2024).

    Google Scholar 

  7. Lei, E. K., Azmat, A., Henry, K. A. & Hussack, G. Outer membrane vesicles as a platform for the discovery of antibodies to bacterial pathogens. Appl. Microbiol. Biotechnol. 108, 232. https://doi.org/10.1007/s00253-024-13033-5 (2024).

    Google Scholar 

  8. Weng, Z. et al. Outer membrane vesicles from acinetobacter baumannii: biogenesis, functions, and vaccine application. Vaccines 12, 49 (2023).

    Google Scholar 

  9. Naghipour Erami, A., Rasooli, I., Jahangiri, A., Darvish, A. & Astaneh Anti-Omp34 antibodies protect against acinetobacter baumannii in a murine sepsis model. Microb. Pathog. 161, 105291. https://doi.org/10.1016/j.micpath.2021.105291 (2021).

    Google Scholar 

  10. Yang, F. L. et al. A medically relevant capsular polysaccharide in acinetobacter baumannii is a potential vaccine candidate. Vaccine 35, 1440–1447 (2017).

    Google Scholar 

  11. Rudenko, N. et al. Immune response to conjugates of fragments of the type K9 capsular polysaccharide of acinetobacter baumannii with carrier proteins. Microbiol. Spectr. 10, e01674–e01622 (2022).

    Google Scholar 

  12. Garcia-Quintanilla, M., Pulido, R., McConnell, J. & M. & First steps towards a vaccine against acinetobacter baumannii. Curr. Pharm. Biotechnol. 14, 897–902 (2013).

    Google Scholar 

  13. Tan, Y. C. & Lahiri, C. Promising acinetobacter baumannii vaccine candidates and drug targets in recent years. Front. Immunol. 13, 900509 (2022).

    Google Scholar 

  14. Ponne, S., Kumar, R., Vanmathi, S., Brilhante, R. S. N. & Kumar, C. R. Reverse engineering protection: A comprehensive survey of reverse vaccinology-based vaccines targeting viral pathogens. Vaccine 42, 2503–2518 (2024).

    Google Scholar 

  15. Perini, H. F., Matos, B. S., de Souza, I. O. F. & da Silva, M. V. Clinical trials of vaccines incorporating antigens identified from a reverse vaccinology approach. In Reverse Vaccinology (eds Das, J., Dave, S., Soares, S. D. C. & Tiwari, S.) 309–319 (Elsevier, 2024).

  16. Beiranvand, S., Doosti, A. & Mirzaei, S. A. Putative novel B-cell vaccine candidates identified by reverse vaccinology and genomics approaches to control acinetobacter baumannii serotypes. Infect. Genet. Evol. 96, 105138 (2021).

    Google Scholar 

  17. Moriel, D. G. et al. Identification of novel vaccine candidates against multidrug-resistant acinetobacter baumannii. PloS One. 8, e77631 (2013).

    Google Scholar 

  18. Zhu, J. et al. BepiTBR: TB reciprocity enhances B cell epitope prediction. Iscience 25, 103764 (2022).

    Google Scholar 

  19. Berzofsky, J. A. An Ia-restricted epitope-specific circuit regulating T cell-B cell interaction and antibody specificity. Surv. Immunologic Res. 2, 223–229 (1983).

    Google Scholar 

  20. Sabhnani, L. et al. Developing subunit immunogens using B and T cell epitopes and their constructs derived from the F1 antigen of yersinia pestis using novel delivery vehicles. FEMS Immunol. Med. Microbiol. 38, 215–229 (2003).

    Google Scholar 

  21. Zhang, J. et al. Modulation of nonneutralizing HIV-1 gp41 responses by an MHC-restricted TH epitope overlapping those of membrane proximal external region broadly neutralizing antibodies. J. Immunol. 192, 1693–1706 (2014).

    Google Scholar 

  22. Cairo, C. W., Gestwicki, J. E., Kanai, M. & Kiessling, L. L. Control of multivalent interactions by binding epitope density. J. Am. Chem. Soc. 124, 1615–1619 (2002).

    Google Scholar 

  23. Cosma, G. L. & Eisenlohr, L. C. Impact of epitope density on CD8 + T cell development and function. Mol. Immunol. 113, 120–125 (2019).

    Google Scholar 

  24. Liu, W. et al. High epitope density in a single Recombinant protein molecule of the extracellular domain of influenza A virus M2 protein significantly enhances protective immunity. Vaccine 23, 366–371 (2004).

    Google Scholar 

  25. Zhu, Y. et al. Complete genome sequence and genome-scale metabolic modelling of acinetobacter baumannii type strain ATCC 19606. Int. J. Med. Microbiol. 310, 151412 (2020).

    Google Scholar 

  26. Consortium, T. U. UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res. 51, D523–D531. https://doi.org/10.1093/nar/gkac1052 (2022).

    Google Scholar 

  27. Matvienko, M. C. L. C. & Genomics Workbench Plant and Animal Genome. Sr. Field Application Scientist, CLC Bio, Aarhus, DE (2015).

  28. Yu, N. Y. et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26, 1608–1615 (2010).

    Google Scholar 

  29. Savojardo, C., Martelli, P. L., Fariselli, P., Profiti, G. & Casadio, R. BUSCA: an integrative web server to predict subcellular localization of proteins. Nucleic Acids Res. 46, W459–W466 (2018).

    Google Scholar 

  30. Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423 (2019).

    Google Scholar 

  31. Imai, K. et al. SOSUI-GramN: high performance prediction for sub-cellular localization of proteins in gram-negative bacteria. Bioinformation 2, 417 (2008).

    Google Scholar 

  32. Doytchinova, I. A. & Flower, D. R. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 8, 4 (2007).

    Google Scholar 

  33. Zaharieva, N., Dimitrov, I., Flower, D. & Doytchinova, I. Immunogenicity prediction by vaxijen: a ten year overview. J. Proteom. Bioinform. 10, 104172 (2017).

    Google Scholar 

  34. Zaharieva, N., Dimitrov, I., Flower, D. R. & Doytchinova, I. VaxiJen dataset of bacterial immunogens: an update. Curr. Comput.-Aided Drug Design. 15, 398–400 (2019).

    Google Scholar 

  35. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Google Scholar 

  36. Blast, N. Basic local alignment search tool. Natl. Libr. Med. Natl. Cent. Biotechnol. Inf. 43, D6–D17 (2015).

    Google Scholar 

  37. Sharma, N., Naorem, L. D., Jain, S. & Raghava, G. P. ToxinPred2: an improved method for predicting toxicity of proteins. Brief. Bioinform. 23, bbac174 (2022).

    Google Scholar 

  38. Morozov, V., Rodrigues, C. H. & Ascher, D. B. CSM-toxin: A web-server for predicting protein toxicity. Pharmaceutics 15, 431 (2023).

    Google Scholar 

  39. Reynisson, B., Alvarez, B., Paul, S., Peters, B. & Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif Deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 48, W449–W454 (2020).

    Google Scholar 

  40. Nilsson, J. B. et al. Accurate prediction of HLA class II antigen presentation across all loci using tailored data acquisition and refined machine learning. Sci. Adv. 9, eadj6367 (2023).

    Google Scholar 

  41. Clifford, J. N. et al. BepiPred-3.0: improved B‐cell epitope prediction using protein Language models. Protein Sci. 31, e4497 (2022).

    Google Scholar 

  42. Jumper, J. et al. Highly accurate protein structure prediction with alphafold. Nature 596, 583–589 (2021).

    Google Scholar 

  43. Jumper, J. & Hassabis, D. Protein structure predictions to atomic accuracy with alphafold. Nat. Methods. 19, 11–12 (2022).

    Google Scholar 

  44. Høie, M. H. et al. DiscoTope-3.0: improved B-cell epitope prediction using inverse folding latent representations. Front. Immunol. 15, 1322712 (2024).

    Google Scholar 

  45. Nagpal, G., Chaudhary, K., Agrawal, P. & Raghava, G. P. Computer-aided prediction of antigen presenting cell modulators for designing peptide-based vaccine adjuvants. J. Translational Med. 16, 1–15 (2018).

    Google Scholar 

  46. Martinelli, D. D. In Silico vaccine design: A tutorial in immunoinformatics. Healthc. Analytics. 2, 100044 (2022).

    Google Scholar 

  47. Zaib, S. et al. Bioinformatics approach for the construction of multiple epitope vaccine against Omicron variant of SARS-CoV-2. Sci. Rep. 12, 19087 (2022).

    Google Scholar 

  48. Garcia-Garcia, J. et al. iFrag: a protein–protein interface prediction server based on sequence fragments. J. Mol. Biol. 429, 382–389 (2017).

    Google Scholar 

  49. McGuffin, L. J. et al. Prediction of protein structures, functions and interactions using the IntFOLD7, multifold and ModFOLDdock servers. Nucleic Acids Res. 51, W274–W280. https://doi.org/10.1093/nar/gkad297 (2023).

    Google Scholar 

  50. Baek, M., Park, T., Heo, L., Park, C. & Seok, C. GalaxyHomomer: a web server for protein homo-oligomer structure prediction from a monomer sequence or structure. Nucleic Acids Res. 45, W320–W324 (2017).

    Google Scholar 

  51. Christoffer, C. et al. LZerD webserver for pairwise and multiple protein–protein Docking. Nucleic Acids Res. 49, W359–W365 (2021).

    Google Scholar 

  52. Christoffer, C., Bharadwaj, V., Luu, R. & Kihara, D. LZerD protein-protein Docking webserver enhanced with de Novo structure prediction. Front. Mol. Biosci. 8, 724947 (2021).

    Google Scholar 

  53. Rapin, N., Lund, O., Bernaschi, M. & Castiglione, F. Computational immunology Meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the immune system. PloS One. 5, e9862 (2010).

    Google Scholar 

  54. Xu, Y. et al. A novel mRNA multi-epitope vaccine of acinetobacter baumannii based on multi-target protein design in immunoinformatic approach. BMC Genom. 25, 791 (2024).

    Google Scholar 

  55. Tabibpour, N. S., Doosti, A. & Sharifzadeh, A. Putative novel outer membrane antigens multi-epitope DNA vaccine candidates identified by immunoinformatic approaches to control acinetobacter baumannii. BMC Immunol. 24, 46 (2023).

    Google Scholar 

  56. Heidarinia, H., Tajbakhsh, E., Rostamian, M. & Momtaz, H. Design and validation of a multi-epitope vaccine candidate against Acinetobacter baumannii using advanced computational methods. AMB Express. 15, 103 (2023).

    Google Scholar 

  57. Heidarinia, H., Tajbakhsh, E., Rostamian, M. & Momtaz, H. Two peptides derivate from acinetobacter baumannii outer membrane protein K as vaccine candidates: a comprehensive in Silico study. BMC Res. Notes. 16, 128 (2023).

    Google Scholar 

  58. Mortazavi, B., Molaei, A. & Fard, N. A. Multi-epitope vaccines, from design to expression; an in Silico approach. Hum. Immunol. 85, 110804 (2024).

    Google Scholar 

Download references