References
-
Marino, A. et al. Unveiling the secrets of acinetobacter baumannii: resistance, current treatments, and future innovations. Int. J. Mol. Sci. 25, 6814 (2024).
-
Hammoudi Halat, D. & Ayoub Moubareck, C. Hospital-acquired and ventilator-associated pneumonia caused by multidrug-resistant Gram-negative pathogens: Understanding epidemiology, resistance patterns, and implications with COVID-19 [version 2; peer review: 2 approved]. F1000Research 12 https://doi.org/10.12688/f1000research.129080.2 (2024).
-
Hessami, A. et al. In Silico design of a novel hybrid epitope-based antigen harboring highly exposed Immunogenic peptides of BamA, OmpA, and Omp34 against acinetobacter baumannii. Int. Immunopharmacol. 142, 113066. https://doi.org/10.1016/j.intimp.2024.113066 (2024).
-
Mansouri, M., Sadeghpoor, M., Jahangiri, A., Ghaini, M. H. & Rasooli, I. Enhanced Immunoprotection against acinetobacter baumannii infection: synergistic effects of bap and BauA in a murine model. Immunol. Lett. 262, 18–26. https://doi.org/10.1016/j.imlet.2023.08.004 (2023).
-
Singh, S., Singh, S., Trivedi, M. & Dwivedi, M. An insight into MDR acinetobacter baumannii infection and its pathogenesis: potential therapeutic targets and challenges. Microb. Pathog. 192, 106674. https://doi.org/10.1016/j.micpath.2024.106674 (2024).
-
Li, C. et al. Outer membrane vesicles generated by an exogenous bacteriophage lysin and protection against acinetobacter baumannii infection. J. Nanobiotechnol. 22, 273. https://doi.org/10.1186/s12951-024-02553-x (2024).
-
Lei, E. K., Azmat, A., Henry, K. A. & Hussack, G. Outer membrane vesicles as a platform for the discovery of antibodies to bacterial pathogens. Appl. Microbiol. Biotechnol. 108, 232. https://doi.org/10.1007/s00253-024-13033-5 (2024).
-
Weng, Z. et al. Outer membrane vesicles from acinetobacter baumannii: biogenesis, functions, and vaccine application. Vaccines 12, 49 (2023).
-
Naghipour Erami, A., Rasooli, I., Jahangiri, A., Darvish, A. & Astaneh Anti-Omp34 antibodies protect against acinetobacter baumannii in a murine sepsis model. Microb. Pathog. 161, 105291. https://doi.org/10.1016/j.micpath.2021.105291 (2021).
-
Yang, F. L. et al. A medically relevant capsular polysaccharide in acinetobacter baumannii is a potential vaccine candidate. Vaccine 35, 1440–1447 (2017).
-
Rudenko, N. et al. Immune response to conjugates of fragments of the type K9 capsular polysaccharide of acinetobacter baumannii with carrier proteins. Microbiol. Spectr. 10, e01674–e01622 (2022).
-
Garcia-Quintanilla, M., Pulido, R., McConnell, J. & M. & First steps towards a vaccine against acinetobacter baumannii. Curr. Pharm. Biotechnol. 14, 897–902 (2013).
-
Tan, Y. C. & Lahiri, C. Promising acinetobacter baumannii vaccine candidates and drug targets in recent years. Front. Immunol. 13, 900509 (2022).
-
Ponne, S., Kumar, R., Vanmathi, S., Brilhante, R. S. N. & Kumar, C. R. Reverse engineering protection: A comprehensive survey of reverse vaccinology-based vaccines targeting viral pathogens. Vaccine 42, 2503–2518 (2024).
-
Perini, H. F., Matos, B. S., de Souza, I. O. F. & da Silva, M. V. Clinical trials of vaccines incorporating antigens identified from a reverse vaccinology approach. In Reverse Vaccinology (eds Das, J., Dave, S., Soares, S. D. C. & Tiwari, S.) 309–319 (Elsevier, 2024).
-
Beiranvand, S., Doosti, A. & Mirzaei, S. A. Putative novel B-cell vaccine candidates identified by reverse vaccinology and genomics approaches to control acinetobacter baumannii serotypes. Infect. Genet. Evol. 96, 105138 (2021).
-
Moriel, D. G. et al. Identification of novel vaccine candidates against multidrug-resistant acinetobacter baumannii. PloS One. 8, e77631 (2013).
-
Zhu, J. et al. BepiTBR: TB reciprocity enhances B cell epitope prediction. Iscience 25, 103764 (2022).
-
Berzofsky, J. A. An Ia-restricted epitope-specific circuit regulating T cell-B cell interaction and antibody specificity. Surv. Immunologic Res. 2, 223–229 (1983).
-
Sabhnani, L. et al. Developing subunit immunogens using B and T cell epitopes and their constructs derived from the F1 antigen of yersinia pestis using novel delivery vehicles. FEMS Immunol. Med. Microbiol. 38, 215–229 (2003).
-
Zhang, J. et al. Modulation of nonneutralizing HIV-1 gp41 responses by an MHC-restricted TH epitope overlapping those of membrane proximal external region broadly neutralizing antibodies. J. Immunol. 192, 1693–1706 (2014).
-
Cairo, C. W., Gestwicki, J. E., Kanai, M. & Kiessling, L. L. Control of multivalent interactions by binding epitope density. J. Am. Chem. Soc. 124, 1615–1619 (2002).
-
Cosma, G. L. & Eisenlohr, L. C. Impact of epitope density on CD8 + T cell development and function. Mol. Immunol. 113, 120–125 (2019).
-
Liu, W. et al. High epitope density in a single Recombinant protein molecule of the extracellular domain of influenza A virus M2 protein significantly enhances protective immunity. Vaccine 23, 366–371 (2004).
-
Zhu, Y. et al. Complete genome sequence and genome-scale metabolic modelling of acinetobacter baumannii type strain ATCC 19606. Int. J. Med. Microbiol. 310, 151412 (2020).
-
Consortium, T. U. UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res. 51, D523–D531. https://doi.org/10.1093/nar/gkac1052 (2022).
-
Matvienko, M. C. L. C. & Genomics Workbench Plant and Animal Genome. Sr. Field Application Scientist, CLC Bio, Aarhus, DE (2015).
-
Yu, N. Y. et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26, 1608–1615 (2010).
-
Savojardo, C., Martelli, P. L., Fariselli, P., Profiti, G. & Casadio, R. BUSCA: an integrative web server to predict subcellular localization of proteins. Nucleic Acids Res. 46, W459–W466 (2018).
-
Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423 (2019).
-
Imai, K. et al. SOSUI-GramN: high performance prediction for sub-cellular localization of proteins in gram-negative bacteria. Bioinformation 2, 417 (2008).
-
Doytchinova, I. A. & Flower, D. R. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 8, 4 (2007).
-
Zaharieva, N., Dimitrov, I., Flower, D. & Doytchinova, I. Immunogenicity prediction by vaxijen: a ten year overview. J. Proteom. Bioinform. 10, 104172 (2017).
-
Zaharieva, N., Dimitrov, I., Flower, D. R. & Doytchinova, I. VaxiJen dataset of bacterial immunogens: an update. Curr. Comput.-Aided Drug Design. 15, 398–400 (2019).
-
Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).
-
Blast, N. Basic local alignment search tool. Natl. Libr. Med. Natl. Cent. Biotechnol. Inf. 43, D6–D17 (2015).
-
Sharma, N., Naorem, L. D., Jain, S. & Raghava, G. P. ToxinPred2: an improved method for predicting toxicity of proteins. Brief. Bioinform. 23, bbac174 (2022).
-
Morozov, V., Rodrigues, C. H. & Ascher, D. B. CSM-toxin: A web-server for predicting protein toxicity. Pharmaceutics 15, 431 (2023).
-
Reynisson, B., Alvarez, B., Paul, S., Peters, B. & Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif Deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 48, W449–W454 (2020).
-
Nilsson, J. B. et al. Accurate prediction of HLA class II antigen presentation across all loci using tailored data acquisition and refined machine learning. Sci. Adv. 9, eadj6367 (2023).
-
Clifford, J. N. et al. BepiPred-3.0: improved B‐cell epitope prediction using protein Language models. Protein Sci. 31, e4497 (2022).
-
Jumper, J. et al. Highly accurate protein structure prediction with alphafold. Nature 596, 583–589 (2021).
-
Jumper, J. & Hassabis, D. Protein structure predictions to atomic accuracy with alphafold. Nat. Methods. 19, 11–12 (2022).
-
Høie, M. H. et al. DiscoTope-3.0: improved B-cell epitope prediction using inverse folding latent representations. Front. Immunol. 15, 1322712 (2024).
-
Nagpal, G., Chaudhary, K., Agrawal, P. & Raghava, G. P. Computer-aided prediction of antigen presenting cell modulators for designing peptide-based vaccine adjuvants. J. Translational Med. 16, 1–15 (2018).
-
Martinelli, D. D. In Silico vaccine design: A tutorial in immunoinformatics. Healthc. Analytics. 2, 100044 (2022).
-
Zaib, S. et al. Bioinformatics approach for the construction of multiple epitope vaccine against Omicron variant of SARS-CoV-2. Sci. Rep. 12, 19087 (2022).
-
Garcia-Garcia, J. et al. iFrag: a protein–protein interface prediction server based on sequence fragments. J. Mol. Biol. 429, 382–389 (2017).
-
McGuffin, L. J. et al. Prediction of protein structures, functions and interactions using the IntFOLD7, multifold and ModFOLDdock servers. Nucleic Acids Res. 51, W274–W280. https://doi.org/10.1093/nar/gkad297 (2023).
-
Baek, M., Park, T., Heo, L., Park, C. & Seok, C. GalaxyHomomer: a web server for protein homo-oligomer structure prediction from a monomer sequence or structure. Nucleic Acids Res. 45, W320–W324 (2017).
-
Christoffer, C. et al. LZerD webserver for pairwise and multiple protein–protein Docking. Nucleic Acids Res. 49, W359–W365 (2021).
-
Christoffer, C., Bharadwaj, V., Luu, R. & Kihara, D. LZerD protein-protein Docking webserver enhanced with de Novo structure prediction. Front. Mol. Biosci. 8, 724947 (2021).
-
Rapin, N., Lund, O., Bernaschi, M. & Castiglione, F. Computational immunology Meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the immune system. PloS One. 5, e9862 (2010).
-
Xu, Y. et al. A novel mRNA multi-epitope vaccine of acinetobacter baumannii based on multi-target protein design in immunoinformatic approach. BMC Genom. 25, 791 (2024).
-
Tabibpour, N. S., Doosti, A. & Sharifzadeh, A. Putative novel outer membrane antigens multi-epitope DNA vaccine candidates identified by immunoinformatic approaches to control acinetobacter baumannii. BMC Immunol. 24, 46 (2023).
-
Heidarinia, H., Tajbakhsh, E., Rostamian, M. & Momtaz, H. Design and validation of a multi-epitope vaccine candidate against Acinetobacter baumannii using advanced computational methods. AMB Express. 15, 103 (2023).
-
Heidarinia, H., Tajbakhsh, E., Rostamian, M. & Momtaz, H. Two peptides derivate from acinetobacter baumannii outer membrane protein K as vaccine candidates: a comprehensive in Silico study. BMC Res. Notes. 16, 128 (2023).
-
Mortazavi, B., Molaei, A. & Fard, N. A. Multi-epitope vaccines, from design to expression; an in Silico approach. Hum. Immunol. 85, 110804 (2024).
