Harnessing glucocorticoid receptor antagonism to enhance the efficacy of cardiac regenerative growth factors and cytokines

harnessing-glucocorticoid-receptor-antagonism-to-enhance-the-efficacy-of-cardiac-regenerative-growth-factors-and-cytokines
Harnessing glucocorticoid receptor antagonism to enhance the efficacy of cardiac regenerative growth factors and cytokines
  • Martin, S. S. et al. 2024 heart disease and stroke statistics: a report of US and global data from the American Heart Association. Circulation 149, e347–e913 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Secco, I. & Giacca, M. Regulation of endogenous cardiomyocyte proliferation: the known unknowns. J. Mol. Cell Cardiol. 179, 80–89 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whelan, R. S., Kaplinskiy, V. & Kitsis, R. N. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu. Rev. Physiol. 72, 19–44 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Chiong, M. et al. Cardiomyocyte death: mechanisms and translational implications. Cell Death Dis. 2, e244 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kytö, V. et al. Apoptotic cardiomyocyte death in fatal myocarditis. Am. J. Cardiol. 94, 746–750 (2004).

    Article  PubMed  Google Scholar 

  • Zhang, Y.-W., Shi, J., Li, Y.-J. & Wei, L. Cardiomyocyte death in doxorubicin-induced cardiotoxicity. Arch. Immunol. Ther. Exp. 57, 435–445 (2009).

    Article  CAS  Google Scholar 

  • Octavia, Y. et al. Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J. Mol. Cell Cardiol. 52, 1213–1225 (2012).

    Article  CAS  PubMed  Google Scholar 

  • González, A. et al. Cardiomyocyte apoptosis in hypertensive cardiomyopathy. Cardiovasc. Res. 59, 549–562 (2003).

    Article  PubMed  Google Scholar 

  • Hein, S. et al. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation 107, 984–991 (2003).

    Article  PubMed  Google Scholar 

  • Yamaji, K. et al. Apoptotic myocardial cell death in the setting of arrhythmogenic right ventricular cardiomyopathy. Acta Cardiol. 60, 465–470 (2005).

    Article  PubMed  Google Scholar 

  • Hashem, S. I. et al. Brief report: oxidative stress mediates cardiomyocyte apoptosis in a human model of Danon disease and heart failure. Stem Cells 33, 2343–2350 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Bongiovanni, C. et al. Reawakening the intrinsic cardiac regenerative potential: molecular strategies to boost dedifferentiation and proliferation of endogenous cardiomyocytes. Front. Cardiovasc. Med. 8, 750604 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tzahor, E. & Poss, K. D. Cardiac regeneration strategies: staying young at heart. Science 356, 1035–1039 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadek, H. & Olson, E. N. Toward the goal of human heart regeneration. Cell Stem Cell 26, 7–16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eschenhagen, T. et al. Cardiomyocyte regeneration: a consensus statement. Circulation 136, 680–686 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • van Berlo, J. H. & Molkentin, J. D. An emerging consensus on cardiac regeneration. Nat. Med. 20, 1386–1393 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashimoto, H., Olson, E. N. & Bassel-Duby, R. Therapeutic approaches for cardiac regeneration and repair. Nat. Rev. Cardiol. 15, 585–600 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Uygur, A. & Lee, R. T. Mechanisms of cardiac regeneration. Dev. Cell 36, 362–374 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bersell, K., Arab, S., Haring, B. & Kühn, B. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138, 257–270 (2009).

    Article  CAS  PubMed  Google Scholar 

  • D’Uva, G. et al. ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat. Cell Biol. 17, 627–638 (2015).

    Article  PubMed  Google Scholar 

  • Polizzotti, B. D. et al. Neuregulin stimulation of cardiomyocyte regeneration in mice and human myocardium reveals a therapeutic window. Sci. Transl. Med. 7, 281ra45 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Uva, G. & Tzahor, E. The key roles of ERBB2 in cardiac regeneration. Cell Cycle 14, 2383–2384 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao, R. et al. A phase II, randomized, double-blind, multicenter, based on standard therapy, placebo-controlled study of the efficacy and safety of recombinant human neuregulin-1 in patients with chronic heart failure. J. Am. Coll. Cardiol. 55, 1907–1914 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Jabbour, A. et al. Parenteral administration of recombinant human neuregulin-1 to patients with stable chronic heart failure produces favourable acute and chronic haemodynamic responses. Eur. J. Heart Fail. 13, 83–92 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Lenihan, D. J. et al. A phase I, single ascending dose study of cimaglermin alfa (Neuregulin 1β3) in patients with systolic dysfunction and heart failure. JACC Basic Transl. Sci. 1, 576–586 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Engel, F. B. et al. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev. 19, 1175–1187 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel, F. B., Hsieh, P. C. H., Lee, R. T. & Keating, M. T. FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc. Natl Acad. Sci. USA 103, 15546–15551 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novoyatleva, T. et al. FGF1-mediated cardiomyocyte cell cycle reentry depends on the interaction of FGFR-1 and Fn14. FASEB J. 28, 2492–2503 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Shen, H. et al. Mononuclear diploid cardiomyocytes support neonatal mouse heart regeneration in response to paracrine IGF2 signaling. eLife 9, e53071 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuetz, T. et al. Murine neonatal cardiac regeneration depends on Insulin-like growth factor 1 receptor signaling. Sci. Rep. 14, 22661 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundgren, N. C. et al. Extracellular signal-regulated kinase and phosphoinositol-3 kinase mediate IGF-1 induced proliferation of fetal sheep cardiomyocytes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285, R1481–R1489 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Koudstaal, S. et al. Sustained delivery of insulin-like growth factor-1/hepatocyte growth factor stimulates endogenous cardiac repair in the chronic infarcted pig heart. J. Cardiovasc. Transl. Res. 7, 232–241 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bongiovanni, C. et al. BMP7 promotes cardiomyocyte regeneration in zebrafish and adult mice. Cell Rep. 43, 114162 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Vasudevarao, M. D. et al. BMP signaling promotes zebrafish heart regeneration via alleviation of replication stress. Nat. Commun. 16, 1708 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubin, T. et al. Oncostatin M is a major mediator of cardiomyocyte dedifferentiation and remodeling. Cell Stem Cell 9, 420–432 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Li, Y. et al. gp130 controls cardiomyocyte proliferation and heart regeneration. Circulation 142, 967–982 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Zou, Y. et al. Leukemia inhibitory factor enhances survival of cardiomyocytes and induces regeneration of myocardium after myocardial infarction. Circulation 108, 748–753 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Negoro, S. et al. Glycoprotein 130 regulates cardiac myocyte survival in doxorubicin-induced apoptosis through phosphatidylinositol 3-kinase/Akt phosphorylation and Bcl-xL/caspase-3 interaction. Circulation 103, 555–561 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Zacchigna, S. et al. Paracrine effect of regulatory T cells promotes cardiomyocyte proliferation during pregnancy and after myocardial infarction. Nat. Commun. 9, 2432 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ock, S. et al. Receptor activator of nuclear factor-κB ligand is a novel inducer of myocardial inflammation. Cardiovasc. Res. 94, 105–114 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Tang, P. et al. Effect of interleukin-6 on myocardial regeneration in mice after cardiac injury. Biomed. Pharmacother. 106, 303–308 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Han, C. et al. Acute inflammation stimulates a regenerative response in the neonatal mouse heart. Cell Res. 25, 1137–1151 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zogbi, C. et al. Beneficial effects of IL-4 and IL-6 on rat neonatal target cardiac cells. Sci. Rep. 10, 12350 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahmi, A. et al. p42/p44-MAPK and PI3K are sufficient for IL-6 family cytokines/gp130 to signal to hypertrophy and survival in cardiomyocytes in the absence of JAK/STAT activation. Cell Signal. 25, 898–909 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wodsedalek, D. J. et al. IL-13 promotes in vivo neonatal cardiomyocyte cell cycle activity and heart regeneration. Am. J. Physiol. Heart Circ. Physiol. 316, H24–H34 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Paddock, S. J. et al. IL4Rα signaling promotes neonatal cardiac regeneration and cardiomyocyte cell cycle activity. J. Mol. Cell Cardiol. 161, 62–74 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer, J. N., Hartogensis, W. E., Patten, M., Fortuin, F. D. & Long, C. S. Interleukin-1 beta induces cardiac myocyte growth but inhibits cardiac fibroblast proliferation in culture. J. Clin. Invest. 95, 2555–2564 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Przybyt, E., Krenning, G., Brinker, M. G. L. & Harmsen, M. C. Adipose stromal cells primed with hypoxia and inflammation enhance cardiomyocyte proliferation rate in vitro through STAT3 and Erk1/2. J. Transl. Med. 11, 39 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pianca, N. et al. Glucocorticoid receptor antagonization propels endogenous cardiomyocyte proliferation and cardiac regeneration. Nat. Cardiovasc. Res. 1, 617–633 (2022).

    Article  CAS  PubMed  Google Scholar 

  • D’Uva, G. & Lauriola, M. Towards the emerging crosstalk: ERBB family and steroid hormones. Semin. Cell Dev. Biol. 50, 143–152 (2016).

    Article  PubMed  Google Scholar 

  • Lauriola, M. et al. Diurnal suppression of EGFR signalling by glucocorticoids and implications for tumour progression and treatment. Nat. Commun. 5, 5073 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Hattori, F. et al. Nongenetic method for purifying stem cell-derived cardiomyocytes. Nat. Methods 7, 61–66 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Porrello, E. R. et al. Transient regenerative potential of the neonatal mouse heart. Science 331, 1078–1080 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, S. et al. Chronic corticosterone exposure suppresses copper transport through GR-mediated intestinal CTR1 pathway in mice. Biology 12, 197 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, Y. & Pu, W. T. Cardiomyocyte maturation: new phase in development. Circ. Res. 126, 1086–1106 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Citri, A. & Yarden, Y. EGF-ERBB signalling: towards the systems level. Nat. Rev. Mol. Cell Biol. 7, 505–516 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Segatto, O., Anastasi, S. & Alemà, S. Regulation of epidermal growth factor receptor signalling by inducible feedback inhibitors. J. Cell Sci. 124, 1785–1793 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Keyse, S. M. Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer Metastasis Rev. 27, 253–261 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Wallace, A. D. & Cidlowski, J. A. Proteasome-mediated glucocorticoid receptor degradation restricts transcriptional signaling by glucocorticoids. J. Biol. Chem. 276, 42714–42721 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Kassel, O. et al. Glucocorticoids inhibit MAP kinase via increased expression and decreased degradation of MKP-1. EMBO J. 20, 7108–7116 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, H.-F., Chuang, H.-C. & Tan, T.-H. Regulation of dual-specificity phosphatase (DUSP) ubiquitination and protein stability. Int. J. Mol. Sci. 20, 2668 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plotnikov, A. et al. The nuclear translocation of ERK1/2 as an anticancer target. Nat. Commun. 6, 6685 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Michailovici, I. et al. Nuclear to cytoplasmic shuttling of ERK promotes differentiation of muscle stem/progenitor cells. Development 141, 2611–2620 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avraham, R. & Yarden, Y. Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nat. Rev. Mol. Cell Biol. 12, 104–117 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Amit, I. et al. A module of negative feedback regulators defines growth factor signaling. Nat. Genet. 39, 503–512 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L. et al. Egr1 regulates regenerative senescence and cardiac repair. Nat. Cardiovasc. Res. 3, 915–932 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Beisaw, A. et al. AP-1 contributes to chromatin accessibility to promote sarcomere disassembly and cardiomyocyte protrusion during zebrafish heart regeneration. Circ. Res. 126, 1760–1778 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aharonov, A. et al. ERBB2 drives YAP activation and EMT-like processes during cardiac regeneration. Nat. Cell Biol. 22, 1346–1356 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Haubner, B. J. et al. Complete cardiac regeneration in a mouse model of myocardial infarction. Aging 4, 966–977 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curigliano, G. et al. Cardiotoxicity of anticancer treatments: epidemiology, detection, and management. CA Cancer J. Clin. 66, 309–325 (2016).

    PubMed  Google Scholar 

  • Morelli, M. B. et al. Cardiotoxicity of anticancer drugs: molecular mechanisms and strategies for cardioprotection. Front. Cardiovasc. Med. 9, 847012 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardinale, D. et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation 131, 1981–1988 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, S. et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat. Med. 18, 1639–1642 (2012).

    Article  PubMed  Google Scholar 

  • Linders, A. N. et al. A review of the pathophysiological mechanisms of doxorubicin-induced cardiotoxicity and aging. npj Aging 10, 9 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, Y. A. et al. Doxorubicin-induced heart failure in cancer patients: a cohort study based on the Korean National Health Insurance Database. Cancer Med. 7, 6084–6092 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitry, M. A. & Edwards, J. G. Doxorubicin induced heart failure: phenotype and molecular mechanisms. Int. J. Cardiol. Heart Vasc. 10, 17–24 (2016).

    PubMed  Google Scholar 

  • Swain, S. M., Whaley, F. S. & Ewer, M. S. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 97, 2869–2879 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Ghigo, A., Li, M. & Hirsch, E. New signal transduction paradigms in anthracycline-induced cardiotoxicity. Biochim. Biophys. Acta 1863, 1916–1925 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Willis, M. S. et al. Doxorubicin exposure causes subacute cardiac atrophy dependent on the striated muscle-specific ubiquitin ligase MuRF1. Circ. Heart Fail. 12, e005234 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, D.-S., Yan, J. & Yang, P.-Z. Cardiomyocyte atrophy, an underestimated contributor in doxorubicin-induced cardiotoxicity. Front. Cardiovasc Med. 9, 812578 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, M. et al. Phosphoinositide 3-kinase gamma inhibition protects from anthracycline cardiotoxicity and reduces tumor growth. Circulation 138, 696–711 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Fabiani, I., Chianca, M., Cipolla, C. M. & Cardinale, D. M. Anthracycline-induced cardiomyopathy: risk prediction, prevention and treatment. Nat. Rev. Cardiol. 22, 551–563 (2025).

    Article  PubMed  Google Scholar 

  • Kamphuis, J. A. M. et al. Early- and late anthracycline-induced cardiac dysfunction: echocardiographic characterization and response to heart failure therapy. Cardiooncology 6, 23 (2020).

    PubMed  PubMed Central  Google Scholar 

  • Strash, N. et al. Human Erbb2-induced Erk activity robustly stimulates cycling and functional remodeling of rat and human cardiomyocytes. eLife 10, e65512 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anastasi, S., Lamberti, D., Alemà, S. & Segatto, O. Regulation of the ErbB network by the MIG6 feedback loop in physiology, tumor suppression and responses to oncogene-targeted therapeutics. Semin. Cell Dev. Biol. 50, 115–124 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Zhong, H. et al. Mig6 not only inhibits EGFR and HER2 but also targets HER3 and HER4 in a differential specificity: implications for targeted esophageal cancer therapy. Biochimie 190, 132–142 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Shaul, Y. D. & Seger, R. The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim. Biophys. Acta 1773, 1213–1226 (2007).

    Article  CAS  PubMed  Google Scholar 

  • von Kriegsheim, A. et al. Cell fate decisions are specified by the dynamic ERK interactome. Nat. Cell Biol. 11, 1458–1464 (2009).

    Article  Google Scholar 

  • Tomasso, A., Koopmans, T., Lijnzaad, P., Bartscherer, K. & Seifert, A. W. An ERK-dependent molecular switch antagonizes fibrosis and promotes regeneration in spiny mice (Acomys). Sci. Adv. 9, eadf2331 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yun, M. H., Gates, P. B. & Brockes, J. P. Sustained ERK activation underlies reprogramming in regeneration-competent salamander cells and distinguishes them from their mammalian counterparts. Stem Cell Rep. 3, 15–23 (2014).

    Article  CAS  Google Scholar 

  • Missinato, M. A. et al. Dusp6 attenuates Ras/MAPK signaling to limit zebrafish heart regeneration. Development 145, dev157206 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Shakked, A. et al. Redifferentiated cardiomyocytes retain residual dedifferentiation signatures and are protected against ischemic injury. Nat. Cardiovasc. Res. 2, 383–398 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, X. et al. Neuregulin-1/erbB-activation improves cardiac function and survival in models of ischemic, dilated, and viral cardiomyopathy. J. Am. Coll. Cardiol. 48, 1438–1447 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Odiete, O., Hill, M. F. & Sawyer, D. B. Neuregulin in cardiovascular development and disease. Circ. Res. 111, 1376–1385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Keulenaer, G. W. et al. Mechanisms of the multitasking endothelial protein NRG-1 as a compensatory factor during chronic heart failure. Circ. Heart Fail. 12, e006288 (2019).

    Article  PubMed  Google Scholar 

  • Gu, X. et al. Cardiac functional improvement in rats with myocardial infarction by up-regulating cardiac myosin light chain kinase with neuregulin. Cardiovasc. Res. 88, 334–343 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Bian, Y. et al. Neuregulin-1 attenuated doxorubicin-induced decrease in cardiac troponins. Am. J. Physiol. Heart Circ. Physiol. 297, H1974–H1983 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galindo, C. L., Ryzhov, S. & Sawyer, D. B. Neuregulin as a heart failure therapy and mediator of reverse remodeling. Curr. Heart Fail. Rep. 11, 40–49 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Simone, A. et al. Control of osteoblast regeneration by a train of Erk activity waves. Nature 590, 129–133 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wen, X., Jiao, L. & Tan, H. MAPK/ERK pathway as a central regulator in vertebrate organ regeneration. Int. J. Mol. Sci. 23, 1464 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, C. & Xiong, J.-W. ERK signaling waves via body-wall muscles guide planarian whole-body regeneration across long distances. Cell Regen. 12, 36 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X.-S. et al. ERK-activated CK-2 triggers blastema formation during appendage regeneration. Sci. Adv. 10, eadk8331 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, P. et al. Hydrogen peroxide primes heart regeneration with a derepression mechanism. Cell Res. 24, 1091–1107 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, P. & Zhong, T. P. MAPK/ERK signalling is required for zebrafish cardiac regeneration. Biotechnol. Lett. 39, 1069–1077 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Ohashi, A. et al. Axolotl liver regeneration is accomplished via compensatory congestion mechanisms regulated by ERK signaling after partial hepatectomy. Dev. Dyn. 250, 838–851 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Duprey-Díaz, M. V., Blagburn, J. M. & Blanco, R. E. Exogenous modulation of retinoic acid signaling affects adult rgc survival in the frog visual system after optic nerve injury. PLoS ONE 11, e0162626 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yasumuro, H., Sakurai, K., Toyama, F., Maruo, F. & Chiba, C. Implications of a multi-step trigger of retinal regeneration in the adult newt. Biomedicines 5, 25 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki, M., Satoh, A., Ide, H. & Tamura, K. Transgenic Xenopus with prx1 limb enhancer reveals crucial contribution of MEK/ERK and PI3K/AKT pathways in blastema formation during limb regeneration. Dev. Biol. 304, 675–686 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Blassberg, R. A., Garza-Garcia, A., Janmohamed, A., Gates, P. B. & Brockes, J. P. Functional convergence of signalling by GPI-anchored and anchorless forms of a salamander protein implicated in limb regeneration. J. Cell Sci. 124, 47–56 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Fan, Y. et al. Ultrafast distant wound response is essential for whole-body regeneration. Cell 186, 3606–3618 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hachemi, Y. et al. Molecular mechanisms of glucocorticoids on skeleton and bone regeneration after fracture. J. Mol. Endocrinol. 61, R75–R90 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, S. et al. Corticosterone inhibits GAS6 to govern hair follicle stem-cell quiescence. Nature 592, 428–432 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyritsis, N. et al. Acute inflammation initiates the regenerative response in the adult zebrafish brain. Science 338, 1353–1356 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Bongiovanni, C. et al. Protocol for isolating and culturing neonatal murine cardiomyocytes. STAR Protoc. 5, 103461 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omatsu-Kanbe, M., Yoshioka, K., Fukunaga, R., Sagawa, H. & Matsuura, H. A simple antegrade perfusion method for isolating viable single cardiomyocytes from neonatal to aged mice. Physiol. Rep. 6, e13688 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ackers-Johnson, M. et al. A simplified, Langendorff-free method for concomitant isolation of viable cardiac myocytes and nonmyocytes from the adult mouse heart. Circ. Res. 119, 909–920 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tholen, S. et al. Flattening of circadian glucocorticoid oscillations drives acute hyperinsulinemia and adipocyte hypertrophy. Cell Rep. 39, 111018 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung, S. et al. Cooperative roles of the suprachiasmatic nucleus central clock and the adrenal clock in controlling circadian glucocorticoid rhythm. Sci. Rep. 7, 46404 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mi, H., Muruganujan, A., Ebert, D., Huang, X. & Thomas, P. D. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 47, D419–D426 (2019).

    Article  CAS  PubMed  Google Scholar