Harnessing the potential of selected Himalayan species for phyto-cosmeceutical formulations guided through biochemometric analysis

harnessing-the-potential-of-selected-himalayan-species-for-phyto-cosmeceutical-formulations-guided-through-biochemometric-analysis
Harnessing the potential of selected Himalayan species for phyto-cosmeceutical formulations guided through biochemometric analysis

References

  1. Duque, L., Bravo, K. & Osorio, E. A holistic anti-aging approach applied in selected cultivated medicinal plants: a view of photoprotection of the skin by different mechanisms. Ind. Crops Prod. 97, 431–439. https://doi.org/10.1016/j.indcrop.2016.12.059 (2017).

    Google Scholar 

  2. Bose, B., Choudhury, H., Tandon, P. & Kumaria, S. Studies on secondary metabolite profiling, anti-inflammatory potential, in vitro photoprotective and skin-aging related enzyme inhibitory activities of Malaxis acuminata, a threatened orchid of nutraceutical importance. J. Photochem. Photobiol., B 173, 686–695. https://doi.org/10.1016/j.jphotobiol.2017.07.010 (2017).

    Google Scholar 

  3. Liu, T. et al. Recent advances in the anti-aging effects of phytoestrogens on collagen, water content, and oxidative stress. Phytotherapy Res. 34(3), 435–447. https://doi.org/10.1002/ptr.6538 (2020).

    Google Scholar 

  4. Singh, L. et al. Process optimization and bioactive compounds quantification from Dactylorhiza hatagirea tuber for alleviating glycemic and oxidative stress. J. Appl. Res. Med. Aromatic Plants 26, 100352. https://doi.org/10.1016/j.jarmap.2021.100352 (2022).

    Google Scholar 

  5. Boran, R. Investigations of anti-aging potential of Hypericum origanifolium Willd. For skincare formulations. Ind. Crops Prod. 118, 290–295. https://doi.org/10.1016/j.indcrop.2018.03.058 (2018).

    Google Scholar 

  6. Corrêa, R. C. et al. New phytochemicals as potential human anti-aging compounds: Reality, promise, and challenges. Crit. Rev. Food Sci. Nutr. 58(6), 942–957. https://doi.org/10.1080/10408398.2016.1233860 (2018).

    Google Scholar 

  7. Bhatt, I. D., Rawat, S., Badhani, A. & Rawal, R. S. Nutraceutical potential of selected wild edible fruits of the Indian Himalayan region. Food Chem. 215, 84–91. https://doi.org/10.1016/j.foodchem.2016.07.143 (2017).

    Google Scholar 

  8. Singh, B., Singh, L., Kewlani, P., Joshi, V. C., Bhatt, I. D., 2023. Rubus spp.(Rubus armeniacus, Rubus ellipticus, Rubus fruticosus, Rubus nepalensis, Rubus niveus, Rubus occidentalis). In Himalayan Fruits and Berries (pp. 381–394). Academic Press. https://doi.org/10.1016/B978-0-323-85591-4.00035-0

  9. Bravo, K., Alzate, F. & Osorio, E. Fruits of selected wild and cultivated Andean plants as sources of potential compounds with antioxidant and anti-aging activity. Ind. Crops Prod. 85, 341–352. https://doi.org/10.1016/j.indcrop.2015.12.074 (2016).

    Google Scholar 

  10. Kewlani, P. et al. Source-dependent variation in phenolic compounds and antioxidant activities of Prinsepia utilis Royle fruits. Environ. Monit. Assess. 194(3), 162. https://doi.org/10.1007/s10661-022-09786-z (2022).

    Google Scholar 

  11. Kewlani, P., Singh, L., Singh, B. & Bhatt, I. D. Sustainable extraction of phenolics and antioxidant activities from Prinsepia utilis byproducts for alleviating aging and oxidative stress. Sustain. Chem. Pharmacy 29, 100791. https://doi.org/10.1016/j.scp.2022.100791 (2022).

    Google Scholar 

  12. De Araújo, R., Lôbo, M., Trindade, K., Silva, D. F. & Pereira, N. Fibroblast growth factors: a controlling mechanism of skin aging. Skin pharmacology and physiology 32(5), 275–282. https://doi.org/10.1159/000501145 (2019).

    Google Scholar 

  13. Han, S. S. et al. Augmented intelligence dermatology: deep neural networks empower medical professionals in diagnosing skin cancer and predicting treatment options for 134 skin disorders. J. Investigat. Dermatol. 140(9), 1753–1761. https://doi.org/10.1016/j.jid.2020.01.019 (2020).

    Google Scholar 

  14. Potdar, D., Hirwani, R. R. & Dhulap, S. Phyto-chemical and pharmacological applications of Berberis aristata. Fitoterapia 83(5), 817–830. https://doi.org/10.1016/j.fitote.2012.04.012 (2012).

    Google Scholar 

  15. Malhotra, B. et al. Recent advances on Berberis aristata emphasizing berberine alkaloid including phytochemistry, pharmacology and drug delivery system. J. Herbal Med. 27, 100433. https://doi.org/10.1016/j.hermed.2021.100433 (2021).

    Google Scholar 

  16. Gaire, B. P. et al. Phytochemical screening and analysis of antibacterial and antioxidant activity of Ficus auriculata (Lour) stem bark. Pharmacognosy J. 3(21), 49–55. https://doi.org/10.5530/pj.2011.21.8 (2011).

    Google Scholar 

  17. Tamta, G., Mehra, N., Tandon, S., Nand, V. & Biswas, S. In vitro antimicrobial assay of leaves, bark and fruits of Ficus auriculata collected from two different regions of Uttarakhand. Int. J. Chem. Stud. 9(1), 930–935 (2021).

    Google Scholar 

  18. Tewari, D. et al. Phenolic profiling, antioxidants, multivariate, and enzyme inhibitory properties of wild Himalayan Fig (Ficus palmata Forssk.): a potential candidate for designing innovative nutraceuticals and related products. Anal. Lett. 54(9), 1439–1456. https://doi.org/10.1080/00032719.2020.1804395 (2021).

    Google Scholar 

  19. Shi, Y. et al. The genus Ficus (Moraceae) used in diet: Its plant diversity, distribution, traditional uses and ethnopharmacological importance. J. Ethnopharmacol. 226, 185–196. https://doi.org/10.1016/j.jep.2018.07.027 (2018).

    Google Scholar 

  20. Gupta, S., Acharya, R. N., Harisha, C. R., Shukla, V. J. & Hegde, S. A. T. I. S. H. A. Detailed pharmacognostical, phytochemical screening and DNA barcoding of leaves of Ficus semicordata Buch-ham ex Sm (Bhumi Udumbara)—An extra pharmacopoeial drug of Ayurveda. Int. J. Pharmaceutical Res. 12(3), 1123–1131 (2020).

    Google Scholar 

  21. Zhang, H., Ma, Z. F., Luo, X. & Li, X. Effects of mulberry fruit (Morus alba L.) consumption on health outcomes: a mini-review. Antioxidants 7(5), 69. https://doi.org/10.3390/antiox7050069 (2018).

    Google Scholar 

  22. Chen, C., Mohamad Razali, U. H., Saikim, F. H., Mahyudin, A. & Mohd Noor, N. Q. I. Morus alba L. plant: bioactive compounds and potential as a functional food ingredient. Foods 10(3), 689 (2021).

    Google Scholar 

  23. Singh, H., Lily, M. K. & Dangwal, K. Evaluation and comparison of polyphenols and bioactivities of wild edible fruits of North-West Himalaya, India. Asian Pacific J. Trop. Disease 5(11), 888–893. https://doi.org/10.1016/S2222-1808(15)60951-3 (2015).

    Google Scholar 

  24. Badhani, A., Rawat, S., Bhatt, I. D. & Rawal, R. S. Variation in chemical constituents and antioxidant activity in yellow Himalayan (Rubus ellipticus Smith) and Hill raspberry (Rubus niveus T hunb). J. Food Biochem. 39(6), 663–672. https://doi.org/10.1111/jfbc.12172 (2015).

    Google Scholar 

  25. Sharma, N. et al. Thalictrum foliolosum: a lesser unexplored medicinal herb from the Himalayan region as a source of valuable benzyl isoquinoline alkaloids. J. Ethnopharmacol. 255, 112736 (2020).

    Google Scholar 

  26. Mishra, M. K., Pandey, S., Niranjan, A. & Misra, P. Comparative analysis of phenolic compounds from wild and in vitro propagated plant Thalictrum foliolosum and antioxidant activity of various crude extracts. Chem. Pap. 75(9), 4873–4885. https://doi.org/10.1007/s11696-021-01708-6 (2021).

    Google Scholar 

  27. Singh, B., Singh, L., Bhatt, I. D. & Kandpal, N. D. Tailored NADES solvents for the extraction optimization of benzylisoquinoline alkaloids from Thalictrum foliolosum DC-A potential phyto-nutraceutical source. Food Chem. 463, 141016. https://doi.org/10.1016/j.foodchem.2024.141016 (2025).

    Google Scholar 

  28. Sharma, P., Dwivedee, B. P., Bisht, D., Dash, A. K. & Kumar, D. The chemical constituents and diverse pharmacological importance of Tinospora cordifolia. Heliyon https://doi.org/10.1016/j.heliyon.2019.e02437 (2019).

    Google Scholar 

  29. Saad, H. M., Tan, C. H., Lim, S. H., Manickam, S. & Sim, K. S. Evaluation of anti-melanogenesis and free radical scavenging activities of five Artocarpus species for cosmeceutical applications. Ind. Crops Prod. 161, 113184. https://doi.org/10.1016/j.indcrop.2020.113184 (2021).

    Google Scholar 

  30. Sayre, R. M., Agin, P. P., LeVee, G. J. & Marlowe, E. A comparison of in vivo and in vitro testing of sunscreening formulas. Photochem. Photobiol. 29(3), 559–566 (1979).

    Google Scholar 

  31. Liyanaarachchi, G. D., Samarasekera, J. K. R. R., Mahanama, K. R. R. & Hemalal, K. D. P. Tyrosinase, elastase, hyaluronidase, inhibitory and antioxidant activity of Sri Lankan medicinal plants for novel cosmeceuticals. Ind. Crops Prod. 111, 597–605. https://doi.org/10.1016/j.indcrop.2017.11.019 (2018).

    Google Scholar 

  32. Ersoy, E., Ozkan, E. E., Boga, M., Yilmaz, M. A. & Mat, A. Anti-aging potential and anti-tyrosinase activity of three Hypericum species with focus on phytochemical composition by LC–MS/MS. Ind. Crops Prod. 141, 111735. https://doi.org/10.1016/j.indcrop.2019.111735 (2019).

    Google Scholar 

  33. Singh, L., Singh, B., Balodi, S., Kewlani, P. & Bhatt, I. D. Synergistic effects of enzyme-based ultrasonic-assisted extraction of phenolic compounds from Rhododendron arboreum and evaluation of thermal kinetic stability. J. Appl. Res. Med. Aromatic Plants 31, 100395. https://doi.org/10.1016/j.jarmap.2022.100395 (2022).

    Google Scholar 

  34. Rawat, S., Bhatt, I. D. & Rawal, R. S. Total phenolic compounds and antioxidant potential of Hedychium spicatum Buch Ham ex D Don in west Himalaya, India. J. Food Compos. Anal. 24(4–5), 574–579. https://doi.org/10.1016/j.jfca.2010.12.005 (2011).

    Google Scholar 

  35. Kumaran, A. & Karunakaran, R. J. Nitric oxide radical scavenging active components from Phyllanthus emblica L. Plant Foods Hum. Nutr. 61, 1–5. https://doi.org/10.1007/s11130-006-0001-0 (2006).

    Google Scholar 

  36. Savi, A., Calegari, G. C., Santos, V. A. Q., Pereira, E. A. & Teixeira, S. D. Chemical characterization and antioxidant of polysaccharide extracted from Dioscorea bulbifera. J. King Saud Univ. Sci. 32(1), 636–642. https://doi.org/10.1016/j.jksus.2018.09.002 (2020).

    Google Scholar 

  37. Benzie, I. F. & Strain, J. J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292 (1996).

    Google Scholar 

  38. Amaro-Ortiz, A., Yan, B. & D’Orazio, J. A. Ultraviolet radiation, aging and the skin: prevention of damage by topical cAMP manipulation. Molecules 19(5), 6202–6219. https://doi.org/10.3390/molecules19056202 (2014).

    Google Scholar 

  39. Li, J. F., Huang, J. L., Liu, D. Y., Chen, Y. L. & Zhang, X. H. Distribution and evolution of aging precipitates in Al-Cu-Li alloy with high Li concentration. Trans. Nonferrous Metals Soc. China 29(1), 15–24. https://doi.org/10.1016/S1003-6326(18)64910-6 (2019).

    Google Scholar 

  40. Verma, A. et al. Skin protection from solar ultraviolet radiation using natural compounds: a review. Environ. Chem. Lett. 22(1), 273–295 (2024).

    Google Scholar 

  41. Sánchez-Ferrer, Á., Rodríguez-López, J. N., García-Cánovas, F., & García-Carmona, F. (1995) Tyrosinase: a comprehensive review of its mechanism. Biochimica et Biophy. Acta (BBA)-Protein Structure Mol. Enzymol., 1247(1), 1–11

  42. Pillaiyar, T., Manickam, M. & Namasivayam, V. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem. 32(1), 403–425. https://doi.org/10.1080/14756366.2016.1256882 (2017).

    Google Scholar 

  43. Lee, W. L., Lee, F. K. & Wang, P. H. Application of hyaluronic acid in patients with interstitial cystitis. J. Chin. Med. Assoc. 84(4), 341–343. https://doi.org/10.1097/JCMA.0000000000000489 (2021).

    Google Scholar 

  44. Jegasothy, S. M., Zabolotniaia, V. & Bielfeldt, S. Efficacy of a new topical nano-hyaluronic acid in humans. J. Clin. Aesthetic Dermatol. 7(3), 27 (2014).

    Google Scholar 

  45. Jiratchayamaethasakul, C. et al. In vitro screening of elastase, collagenase, hyaluronidase, and tyrosinase inhibitory and antioxidant activities of 22 halophyte plant extracts for novel cosmeceuticals. Fish. Aquatic Sci. 23, 1–9. https://doi.org/10.1186/s41240-020-00149-8 (2020).

    Google Scholar 

  46. Necas, J. B. L. B. P., Bartosikova, L., Brauner, P. & Kolar, J. J. V. M. Hyaluronic acid (hyaluronan): a review. Veterinarni Med. 53(8), 397–411 (2008).

    Google Scholar 

  47. McGuire, J. et al. Hyaluronidase inhibitor delphinidin inhibits cancer metastasis. Sci. Reports 14(1), 14958 (2024).

    Google Scholar 

  48. Tomas, M., Günal-Köroğlu, D., Kamiloglu, S., Ozdal, T. & Capanoglu, E. The state of the art in anti-aging: plant-based phytochemicals for skin care. Immun. Ageing 22(1), 5 (2025).

    Google Scholar 

  49. Younis, I. Y., El-Hawary, S. S., Eldahshan, O. A., Abdel-Aziz, M. M. & Ali, Z. Y. Green synthesis of magnesium nanoparticles mediated from Rosa floribunda charisma extract and its antioxidant, antiaging and antibiofilm activities. Sci. Rep. 11(1), 16868. https://doi.org/10.1038/s41598-021-96377-6 (2021).

    Google Scholar 

  50. MacDonald-Wicks, L. K., Wood, L. G. & Garg, M. L. Methodology for the determination of biological antioxidant capacity in vitro: a review. J. Sci. Food Agric. 86(13), 2046–2056. https://doi.org/10.1002/jsfa.2603 (2006).

    Google Scholar 

  51. Soria-Valles, C. & López-Otín, C. iPSCs: on the road to reprogramming aging. Trends Mol. Med. 22(8), 713–724. https://doi.org/10.1016/j.molmed.2016.05.010 (2016).

    Google Scholar 

  52. Ravetti, S. et al. Ascorbic acid in skin health. Cosmetics 6(4), 58. https://doi.org/10.3390/cosmetics6040058 (2019).

    Google Scholar 

  53. Kanlayavattanakul, M. et al. Recent insights into catechins-rich Assam tea extract for photoaging and senescent ageing. Sci. Rep. 14(1), 2253. https://doi.org/10.1038/s41598-024-52781-2 (2024).

    Google Scholar 

  54. Magnani, C., Isaac, V. L. B., Correa, M. A. & Salgado, H. R. N. Caffeic acid: a review of its potential use in medications and cosmetics. Anal. Methods 6(10), 3203–3210. https://doi.org/10.1039/C3AY41807C (2014).

    Google Scholar 

  55. Bai, J. et al. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed. Pharmacother. 133, 110985. https://doi.org/10.1016/j.biopha.2020.11098 (2021).

    Google Scholar 

  56. Yang, Y. et al. Exploring the anti-aging effects of chlorogenic acid and the underlying mechanisms based on a Caenorhabditis elegans model. J. Tradition. Chin. Med. Sci. 10(2), 208–217. https://doi.org/10.1016/j.jtcms.2023.02.003 (2023).

    Google Scholar 

  57. Singh, L., Singh, B. & Bhatt, I. D. NADES-based extraction optimization and enrichment of Cyanidin-3-O-galactoside from Rhododendron arboreum Sm: Kinetics and thermodynamics insights. Food Chem 455, 139793. https://doi.org/10.1016/j.foodchem.2024.139793 (2024).

    Google Scholar 

  58. Feng, S. et al. Comprehensive evaluation of chemical composition and health-promoting effects with chemometrics analysis of plant derived edible oils. Food Chemistry: X 14, 100341. https://doi.org/10.1016/j.fochx.2022.100341 (2022).

    Google Scholar 

Download references