References
-
Duque, L., Bravo, K. & Osorio, E. A holistic anti-aging approach applied in selected cultivated medicinal plants: a view of photoprotection of the skin by different mechanisms. Ind. Crops Prod. 97, 431–439. https://doi.org/10.1016/j.indcrop.2016.12.059 (2017).
-
Bose, B., Choudhury, H., Tandon, P. & Kumaria, S. Studies on secondary metabolite profiling, anti-inflammatory potential, in vitro photoprotective and skin-aging related enzyme inhibitory activities of Malaxis acuminata, a threatened orchid of nutraceutical importance. J. Photochem. Photobiol., B 173, 686–695. https://doi.org/10.1016/j.jphotobiol.2017.07.010 (2017).
-
Liu, T. et al. Recent advances in the anti-aging effects of phytoestrogens on collagen, water content, and oxidative stress. Phytotherapy Res. 34(3), 435–447. https://doi.org/10.1002/ptr.6538 (2020).
-
Singh, L. et al. Process optimization and bioactive compounds quantification from Dactylorhiza hatagirea tuber for alleviating glycemic and oxidative stress. J. Appl. Res. Med. Aromatic Plants 26, 100352. https://doi.org/10.1016/j.jarmap.2021.100352 (2022).
-
Boran, R. Investigations of anti-aging potential of Hypericum origanifolium Willd. For skincare formulations. Ind. Crops Prod. 118, 290–295. https://doi.org/10.1016/j.indcrop.2018.03.058 (2018).
-
Corrêa, R. C. et al. New phytochemicals as potential human anti-aging compounds: Reality, promise, and challenges. Crit. Rev. Food Sci. Nutr. 58(6), 942–957. https://doi.org/10.1080/10408398.2016.1233860 (2018).
-
Bhatt, I. D., Rawat, S., Badhani, A. & Rawal, R. S. Nutraceutical potential of selected wild edible fruits of the Indian Himalayan region. Food Chem. 215, 84–91. https://doi.org/10.1016/j.foodchem.2016.07.143 (2017).
-
Singh, B., Singh, L., Kewlani, P., Joshi, V. C., Bhatt, I. D., 2023. Rubus spp.(Rubus armeniacus, Rubus ellipticus, Rubus fruticosus, Rubus nepalensis, Rubus niveus, Rubus occidentalis). In Himalayan Fruits and Berries (pp. 381–394). Academic Press. https://doi.org/10.1016/B978-0-323-85591-4.00035-0
-
Bravo, K., Alzate, F. & Osorio, E. Fruits of selected wild and cultivated Andean plants as sources of potential compounds with antioxidant and anti-aging activity. Ind. Crops Prod. 85, 341–352. https://doi.org/10.1016/j.indcrop.2015.12.074 (2016).
-
Kewlani, P. et al. Source-dependent variation in phenolic compounds and antioxidant activities of Prinsepia utilis Royle fruits. Environ. Monit. Assess. 194(3), 162. https://doi.org/10.1007/s10661-022-09786-z (2022).
-
Kewlani, P., Singh, L., Singh, B. & Bhatt, I. D. Sustainable extraction of phenolics and antioxidant activities from Prinsepia utilis byproducts for alleviating aging and oxidative stress. Sustain. Chem. Pharmacy 29, 100791. https://doi.org/10.1016/j.scp.2022.100791 (2022).
-
De Araújo, R., Lôbo, M., Trindade, K., Silva, D. F. & Pereira, N. Fibroblast growth factors: a controlling mechanism of skin aging. Skin pharmacology and physiology 32(5), 275–282. https://doi.org/10.1159/000501145 (2019).
-
Han, S. S. et al. Augmented intelligence dermatology: deep neural networks empower medical professionals in diagnosing skin cancer and predicting treatment options for 134 skin disorders. J. Investigat. Dermatol. 140(9), 1753–1761. https://doi.org/10.1016/j.jid.2020.01.019 (2020).
-
Potdar, D., Hirwani, R. R. & Dhulap, S. Phyto-chemical and pharmacological applications of Berberis aristata. Fitoterapia 83(5), 817–830. https://doi.org/10.1016/j.fitote.2012.04.012 (2012).
-
Malhotra, B. et al. Recent advances on Berberis aristata emphasizing berberine alkaloid including phytochemistry, pharmacology and drug delivery system. J. Herbal Med. 27, 100433. https://doi.org/10.1016/j.hermed.2021.100433 (2021).
-
Gaire, B. P. et al. Phytochemical screening and analysis of antibacterial and antioxidant activity of Ficus auriculata (Lour) stem bark. Pharmacognosy J. 3(21), 49–55. https://doi.org/10.5530/pj.2011.21.8 (2011).
-
Tamta, G., Mehra, N., Tandon, S., Nand, V. & Biswas, S. In vitro antimicrobial assay of leaves, bark and fruits of Ficus auriculata collected from two different regions of Uttarakhand. Int. J. Chem. Stud. 9(1), 930–935 (2021).
-
Tewari, D. et al. Phenolic profiling, antioxidants, multivariate, and enzyme inhibitory properties of wild Himalayan Fig (Ficus palmata Forssk.): a potential candidate for designing innovative nutraceuticals and related products. Anal. Lett. 54(9), 1439–1456. https://doi.org/10.1080/00032719.2020.1804395 (2021).
-
Shi, Y. et al. The genus Ficus (Moraceae) used in diet: Its plant diversity, distribution, traditional uses and ethnopharmacological importance. J. Ethnopharmacol. 226, 185–196. https://doi.org/10.1016/j.jep.2018.07.027 (2018).
-
Gupta, S., Acharya, R. N., Harisha, C. R., Shukla, V. J. & Hegde, S. A. T. I. S. H. A. Detailed pharmacognostical, phytochemical screening and DNA barcoding of leaves of Ficus semicordata Buch-ham ex Sm (Bhumi Udumbara)—An extra pharmacopoeial drug of Ayurveda. Int. J. Pharmaceutical Res. 12(3), 1123–1131 (2020).
-
Zhang, H., Ma, Z. F., Luo, X. & Li, X. Effects of mulberry fruit (Morus alba L.) consumption on health outcomes: a mini-review. Antioxidants 7(5), 69. https://doi.org/10.3390/antiox7050069 (2018).
-
Chen, C., Mohamad Razali, U. H., Saikim, F. H., Mahyudin, A. & Mohd Noor, N. Q. I. Morus alba L. plant: bioactive compounds and potential as a functional food ingredient. Foods 10(3), 689 (2021).
-
Singh, H., Lily, M. K. & Dangwal, K. Evaluation and comparison of polyphenols and bioactivities of wild edible fruits of North-West Himalaya, India. Asian Pacific J. Trop. Disease 5(11), 888–893. https://doi.org/10.1016/S2222-1808(15)60951-3 (2015).
-
Badhani, A., Rawat, S., Bhatt, I. D. & Rawal, R. S. Variation in chemical constituents and antioxidant activity in yellow Himalayan (Rubus ellipticus Smith) and Hill raspberry (Rubus niveus T hunb). J. Food Biochem. 39(6), 663–672. https://doi.org/10.1111/jfbc.12172 (2015).
-
Sharma, N. et al. Thalictrum foliolosum: a lesser unexplored medicinal herb from the Himalayan region as a source of valuable benzyl isoquinoline alkaloids. J. Ethnopharmacol. 255, 112736 (2020).
-
Mishra, M. K., Pandey, S., Niranjan, A. & Misra, P. Comparative analysis of phenolic compounds from wild and in vitro propagated plant Thalictrum foliolosum and antioxidant activity of various crude extracts. Chem. Pap. 75(9), 4873–4885. https://doi.org/10.1007/s11696-021-01708-6 (2021).
-
Singh, B., Singh, L., Bhatt, I. D. & Kandpal, N. D. Tailored NADES solvents for the extraction optimization of benzylisoquinoline alkaloids from Thalictrum foliolosum DC-A potential phyto-nutraceutical source. Food Chem. 463, 141016. https://doi.org/10.1016/j.foodchem.2024.141016 (2025).
-
Sharma, P., Dwivedee, B. P., Bisht, D., Dash, A. K. & Kumar, D. The chemical constituents and diverse pharmacological importance of Tinospora cordifolia. Heliyon https://doi.org/10.1016/j.heliyon.2019.e02437 (2019).
-
Saad, H. M., Tan, C. H., Lim, S. H., Manickam, S. & Sim, K. S. Evaluation of anti-melanogenesis and free radical scavenging activities of five Artocarpus species for cosmeceutical applications. Ind. Crops Prod. 161, 113184. https://doi.org/10.1016/j.indcrop.2020.113184 (2021).
-
Sayre, R. M., Agin, P. P., LeVee, G. J. & Marlowe, E. A comparison of in vivo and in vitro testing of sunscreening formulas. Photochem. Photobiol. 29(3), 559–566 (1979).
-
Liyanaarachchi, G. D., Samarasekera, J. K. R. R., Mahanama, K. R. R. & Hemalal, K. D. P. Tyrosinase, elastase, hyaluronidase, inhibitory and antioxidant activity of Sri Lankan medicinal plants for novel cosmeceuticals. Ind. Crops Prod. 111, 597–605. https://doi.org/10.1016/j.indcrop.2017.11.019 (2018).
-
Ersoy, E., Ozkan, E. E., Boga, M., Yilmaz, M. A. & Mat, A. Anti-aging potential and anti-tyrosinase activity of three Hypericum species with focus on phytochemical composition by LC–MS/MS. Ind. Crops Prod. 141, 111735. https://doi.org/10.1016/j.indcrop.2019.111735 (2019).
-
Singh, L., Singh, B., Balodi, S., Kewlani, P. & Bhatt, I. D. Synergistic effects of enzyme-based ultrasonic-assisted extraction of phenolic compounds from Rhododendron arboreum and evaluation of thermal kinetic stability. J. Appl. Res. Med. Aromatic Plants 31, 100395. https://doi.org/10.1016/j.jarmap.2022.100395 (2022).
-
Rawat, S., Bhatt, I. D. & Rawal, R. S. Total phenolic compounds and antioxidant potential of Hedychium spicatum Buch Ham ex D Don in west Himalaya, India. J. Food Compos. Anal. 24(4–5), 574–579. https://doi.org/10.1016/j.jfca.2010.12.005 (2011).
-
Kumaran, A. & Karunakaran, R. J. Nitric oxide radical scavenging active components from Phyllanthus emblica L. Plant Foods Hum. Nutr. 61, 1–5. https://doi.org/10.1007/s11130-006-0001-0 (2006).
-
Savi, A., Calegari, G. C., Santos, V. A. Q., Pereira, E. A. & Teixeira, S. D. Chemical characterization and antioxidant of polysaccharide extracted from Dioscorea bulbifera. J. King Saud Univ. Sci. 32(1), 636–642. https://doi.org/10.1016/j.jksus.2018.09.002 (2020).
-
Benzie, I. F. & Strain, J. J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292 (1996).
-
Amaro-Ortiz, A., Yan, B. & D’Orazio, J. A. Ultraviolet radiation, aging and the skin: prevention of damage by topical cAMP manipulation. Molecules 19(5), 6202–6219. https://doi.org/10.3390/molecules19056202 (2014).
-
Li, J. F., Huang, J. L., Liu, D. Y., Chen, Y. L. & Zhang, X. H. Distribution and evolution of aging precipitates in Al-Cu-Li alloy with high Li concentration. Trans. Nonferrous Metals Soc. China 29(1), 15–24. https://doi.org/10.1016/S1003-6326(18)64910-6 (2019).
-
Verma, A. et al. Skin protection from solar ultraviolet radiation using natural compounds: a review. Environ. Chem. Lett. 22(1), 273–295 (2024).
-
Sánchez-Ferrer, Á., Rodríguez-López, J. N., García-Cánovas, F., & García-Carmona, F. (1995) Tyrosinase: a comprehensive review of its mechanism. Biochimica et Biophy. Acta (BBA)-Protein Structure Mol. Enzymol., 1247(1), 1–11
-
Pillaiyar, T., Manickam, M. & Namasivayam, V. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem. 32(1), 403–425. https://doi.org/10.1080/14756366.2016.1256882 (2017).
-
Lee, W. L., Lee, F. K. & Wang, P. H. Application of hyaluronic acid in patients with interstitial cystitis. J. Chin. Med. Assoc. 84(4), 341–343. https://doi.org/10.1097/JCMA.0000000000000489 (2021).
-
Jegasothy, S. M., Zabolotniaia, V. & Bielfeldt, S. Efficacy of a new topical nano-hyaluronic acid in humans. J. Clin. Aesthetic Dermatol. 7(3), 27 (2014).
-
Jiratchayamaethasakul, C. et al. In vitro screening of elastase, collagenase, hyaluronidase, and tyrosinase inhibitory and antioxidant activities of 22 halophyte plant extracts for novel cosmeceuticals. Fish. Aquatic Sci. 23, 1–9. https://doi.org/10.1186/s41240-020-00149-8 (2020).
-
Necas, J. B. L. B. P., Bartosikova, L., Brauner, P. & Kolar, J. J. V. M. Hyaluronic acid (hyaluronan): a review. Veterinarni Med. 53(8), 397–411 (2008).
-
McGuire, J. et al. Hyaluronidase inhibitor delphinidin inhibits cancer metastasis. Sci. Reports 14(1), 14958 (2024).
-
Tomas, M., Günal-Köroğlu, D., Kamiloglu, S., Ozdal, T. & Capanoglu, E. The state of the art in anti-aging: plant-based phytochemicals for skin care. Immun. Ageing 22(1), 5 (2025).
-
Younis, I. Y., El-Hawary, S. S., Eldahshan, O. A., Abdel-Aziz, M. M. & Ali, Z. Y. Green synthesis of magnesium nanoparticles mediated from Rosa floribunda charisma extract and its antioxidant, antiaging and antibiofilm activities. Sci. Rep. 11(1), 16868. https://doi.org/10.1038/s41598-021-96377-6 (2021).
-
MacDonald-Wicks, L. K., Wood, L. G. & Garg, M. L. Methodology for the determination of biological antioxidant capacity in vitro: a review. J. Sci. Food Agric. 86(13), 2046–2056. https://doi.org/10.1002/jsfa.2603 (2006).
-
Soria-Valles, C. & López-Otín, C. iPSCs: on the road to reprogramming aging. Trends Mol. Med. 22(8), 713–724. https://doi.org/10.1016/j.molmed.2016.05.010 (2016).
-
Ravetti, S. et al. Ascorbic acid in skin health. Cosmetics 6(4), 58. https://doi.org/10.3390/cosmetics6040058 (2019).
-
Kanlayavattanakul, M. et al. Recent insights into catechins-rich Assam tea extract for photoaging and senescent ageing. Sci. Rep. 14(1), 2253. https://doi.org/10.1038/s41598-024-52781-2 (2024).
-
Magnani, C., Isaac, V. L. B., Correa, M. A. & Salgado, H. R. N. Caffeic acid: a review of its potential use in medications and cosmetics. Anal. Methods 6(10), 3203–3210. https://doi.org/10.1039/C3AY41807C (2014).
-
Bai, J. et al. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed. Pharmacother. 133, 110985. https://doi.org/10.1016/j.biopha.2020.11098 (2021).
-
Yang, Y. et al. Exploring the anti-aging effects of chlorogenic acid and the underlying mechanisms based on a Caenorhabditis elegans model. J. Tradition. Chin. Med. Sci. 10(2), 208–217. https://doi.org/10.1016/j.jtcms.2023.02.003 (2023).
-
Singh, L., Singh, B. & Bhatt, I. D. NADES-based extraction optimization and enrichment of Cyanidin-3-O-galactoside from Rhododendron arboreum Sm: Kinetics and thermodynamics insights. Food Chem 455, 139793. https://doi.org/10.1016/j.foodchem.2024.139793 (2024).
-
Feng, S. et al. Comprehensive evaluation of chemical composition and health-promoting effects with chemometrics analysis of plant derived edible oils. Food Chemistry: X 14, 100341. https://doi.org/10.1016/j.fochx.2022.100341 (2022).
