High prevalence of tomato brown rugose fruit virus in domestic wastewater as a potential viral indicator for treatment systems

high-prevalence-of-tomato-brown-rugose-fruit-virus-in-domestic-wastewater-as-a-potential-viral-indicator-for-treatment-systems
High prevalence of tomato brown rugose fruit virus in domestic wastewater as a potential viral indicator for treatment systems

References

  1. Gerrity, D., Crank, K., Steinle-Darling, E. & Pecson, B. M. Establishing pathogen log reduction value targets for direct potable reuse in the united States. AWWA Water Sci. 5, e1353 (2023).

    Google Scholar 

  2. Mehle, N. et al. Tomato brown rugose fruit virus in aqueous environments – survival and significance of water-mediated transmission. Front Plant. Sci 14, (2023).

  3. Natarajan, A. et al. The tomato brown rugose fruit virus movement protein gene is a novel microbial source tracking marker. Appl. Environ. Microbiol. 89, e00583–e00523 (2023).

    Google Scholar 

  4. Rothman, J. A. & Whiteson, K. L. Sequencing and variant detection of eight abundant Plant-Infecting tobamoviruses across Southern California wastewater. Microbiol. Spectr. 10, e03050–e03022 (2022).

    Google Scholar 

  5. Sherchan, S. P., Malla, B. & Haramoto, E. First quantitative detection of tomato brown rugose fruit virus in wastewater in Louisiana. Sci. Total Environ. 888, 164001 (2023).

    Google Scholar 

  6. Salem, N., Mansour, A., Ciuffo, M. & Falk, B. W. Turina, M. A new tobamovirus infecting tomato crops in Jordan. Arch. Virol. 161, 503–506 (2016).

    Google Scholar 

  7. Luria, N. et al. A new Israeli tobamovirus isolate infects tomato plants harboring Tm-22 resistance genes. PLoS One. 12, e0170429 (2017).

    Google Scholar 

  8. Zhang, S., Griffiths, J. S., Marchand, G., Bernards, M. A. & Wang, A. Tomato brown rugose fruit virus: an emerging and rapidly spreading plant RNA virus that threatens tomato production worldwide. Mol. Plant Pathol. 23, 1262–1277 (2022).

    Google Scholar 

  9. Eftim, S. E. et al. Occurrence of Norovirus in Raw sewage – A systematic literature review and meta-analysis. Water Res. 111, 366–374 (2017).

    Google Scholar 

  10. Hughes, B., Beale, D. J., Dennis, P. G., Cook, S. & Ahmed, W. Cross-Comparison of human Wastewater-Associated molecular markers in relation to fecal indicator bacteria and enteric viruses in recreational beach waters. Appl. Environ. Microbiol. 83, e00028–e00017 (2017).

    Google Scholar 

  11. Farkas, K. et al. Viral indicators for tracking domestic wastewater contamination in the aquatic environment. Water Res. 181, 115926 (2020).

    Google Scholar 

  12. Schmitz, B. W. et al. Virus surrogates throughout a full-scale advanced water reuse system. Water Res. 256, 121556 (2024).

    Google Scholar 

  13. Zhang, T. et al. RNA viral community in human feces: prevalence of plant pathogenic viruses. PLoS Biol. 4, e3 (2005).

    Google Scholar 

  14. Kitajima, M., Sassi, H. P. & Torrey, J. R. Pepper mild mottle virus as a water quality indicator. Npj Clean. Water. 1, 1–9 (2018).

    Google Scholar 

  15. Symonds, E. M., Nguyen, K. H., Harwood, V. J. & Breitbart, M. Pepper mild mottle virus: A plant pathogen with a greater purpose in (waste)water treatment development and public health management. Water Res. 144, 1–12 (2018).

    Google Scholar 

  16. Hamza, H., Rizk, N. M., Gad, M. A. & Hamza, I. A. Pepper mild mottle virus in wastewater in egypt: a potential indicator of wastewater pollution and the efficiency of the treatment process. Arch. Virol. 164, 2707–2713 (2019).

    Google Scholar 

  17. Gearhart, N. & Pagilla, K. Indicator and pathogenic virus removal in bench scale soil aquifer treatment. Sci. Total Environ. 945, 173997 (2024).

    Google Scholar 

  18. Bozkurt, H., D’Souza, D. H. & Davidson, P. M. Thermal inactivation of foodborne enteric viruses and their viral surrogates in foods. J. Food Prot. 78, 1597–1617 (2015).

    Google Scholar 

  19. Lau, M. et al. Selection of surrogate pathogens and process indicator organisms for pasteurisation of municipal wastewater—A survey of literature data on heat inactivation of pathogens. Process Saf. Environ. Prot. 133, 301–314 (2020).

    Google Scholar 

  20. Nasser, A., sasi, S. & Nitzan, Y. Coliphages as indicators for the microbial quality of treated wastewater effluents. Food Environ. Virol. 13, 170–178 (2021).

    Google Scholar 

  21. Teel, L. et al. Pathogen reduction by ozone–biological activated carbon-based advanced water reclamation for reuse. Water Environ. Res. 94, e10726 (2022).

    Google Scholar 

  22. Mikel, P., Vasickova, P. & Kralik, P. Methods for Preparation of MS2 Phage-Like particles and their utilization as process control viruses in RT-PCR and qRT-PCR detection of RNA viruses from food matrices and clinical specimens. Food Environ. Virol. 7, 96–111 (2015).

    Google Scholar 

  23. Dutilh, B. E. et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat. Commun. 5, 4498 (2014).

    Google Scholar 

  24. Stachler, E., Akyon, B., de Carvalho, N. A., Ference, C. & Bibby, K. Correlation of crassphage qPCR markers with culturable and molecular indicators of human fecal pollution in an impacted urban watershed. Environ. Sci. Technol. 52, 7505–7512 (2018).

    Google Scholar 

  25. Haak, L. et al. Spatial and Temporal variability and data bias in wastewater surveillance of SARS-CoV-2 in a sewer system. Sci. Total Environ. 805, 150390 (2022).

    Google Scholar 

  26. Li, L. et al. Detecting SARS-CoV-2 variants in wastewater and their correlation with Circulating variants in the communities. Sci. Rep. 12, 16141 (2022).

    Google Scholar 

  27. Gharoon, N. et al. Removal of SARS-CoV-2 viral markers through a water reclamation facility. Water Environ. Res. https://doi.org/10.1002/wer.1641 (2021).

    Google Scholar 

  28. Li, L. et al. Longitudinal monitoring of SARS-CoV-2 in wastewater using viral genetic markers and the Estimation of unconfirmed COVID-19 cases. Sci. Total Environ. 817, 152958 (2022).

    Google Scholar 

  29. Panno, S. et al. Real-time reverse transcription polymerase chain reaction development for rapid detection of tomato brown rugose fruit virus and comparison with other techniques. PeerJ 7, e7928 (2019).

    Google Scholar 

  30. Khan, M. et al. Significance of wastewater surveillance in detecting the prevalence of SARS-CoV-2 variants and other respiratory viruses in the community – A multi-site evaluation. One Health. 16, 100536 (2023).

    Google Scholar 

  31. Kalantar, K. L. et al. IDseq—An open source cloud-based pipeline and analysis service for metagenomic pathogen detection and monitoring. GigaScience 9, giaa111 (2020).

  32. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Google Scholar 

  33. Brumfield, K. D. et al. Microbiome Analysis for Wastewater Surveillance during COVID-19. mBio 13, e0059122 (2022).

  34. Paisantham, P. et al. Evaluation of tomato brown rugose fruit virus as a microbial source tracking marker for human sewage in Thailand. Sci. Total Environ. 963, 178419 (2025).

    Google Scholar 

  35. Li, L., Haak, L., Carine, M. & Pagilla, K. R. Temporal assessment of SARS-CoV-2 detection in wastewater and its epidemiological implications in COVID-19 case dynamics. Heliyon 10, (2024).

  36. Goitom, E. et al. Identification of environmental and methodological factors driving variability of pepper mild mottle virus (PMMoV) across three wastewater treatment plants in the City of Toronto. Sci. Total Environ. 932, 172917 (2024).

    Google Scholar 

  37. Wu, H., Brighton, K., Chen, J., Shuai, D. & Aw, T. G. Quantification of Particle-Associated viruses in secondary treated wastewater effluent. Food Environ. Virol. 17, 19 (2025).

    Google Scholar 

Download references