High-throughput platforms for machine learning-guided lipid nanoparticle design

high-throughput-platforms-for-machine-learning-guided-lipid-nanoparticle-design
High-throughput platforms for machine learning-guided lipid nanoparticle design
  • Anderson, D. G., Lynn, D. M. & Langer, R. Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. Angew. Chem. Int. Ed. 42, 3153–3158 (2003).

    Article  Google Scholar 

  • Breunig, M., Lungwitz, U., Liebl, R. & Goepferich, A. Breaking up the correlation between efficacy and toxicity for nonviral gene delivery. Proc. Natl Acad. Sci. USA 104, 14454–14459 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lynn, D. M. & Langer, R. Degradable poly(β-amino esters): synthesis, characterization, and self-assembly with plasmid DNA. J. Am. Chem. Soc. 122, 10761–10768 (2000).

    Article  Google Scholar 

  • Siegwart, D. J. et al. Combinatorial synthesis of chemically diverse core-shell nanoparticles for intracellular delivery. Proc. Natl Acad. Sci. USA 108, 12996–13001 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wightman, L. et al. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J. Gene Med. 3, 362–372 (2001).

    Article  PubMed  Google Scholar 

  • Dahlman, J. E. et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat. Nanotechnol. 9, 648–655 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Patra, J. K. et al. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16, 71 (2018).

    Article  Google Scholar 

  • Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic: an update. Bioeng. Transl. Med. 4, e10143 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Maurer, M. S. et al. Patisiran treatment in patients with transthyretin cardiac amyloidosis. N. Engl. J. Med. 389, 1553–1565 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassett, K. J. et al. Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines. Mol. Ther. Nucleic Acids 15, 1–11 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma, M. et al. The landscape for lipid-nanoparticle-based genomic medicines. Nat. Rev. Drug Discov. 22, 349–350 (2023).

    Article  PubMed  Google Scholar 

  • Dehghani-Ghahnaviyeh, S. et al. Ionizable amino lipids distribution and effects on DSPC/cholesterol membranes: implications for lipid nanoparticle structure. J. Phys. Chem. B 127, 6928–6939 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • McDonald, S. M. et al. Applied machine learning as a driver for polymeric biomaterials design. Nat. Commun. 14, 4838 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, B. et al. Accelerating ionizable lipid discovery for mRNA delivery using machine learning and combinatorial chemistry. Nat. Mater. 23, 1002–1008 (2024).

    Article  PubMed  Google Scholar 

  • Han, X. et al. Fast and facile synthesis of amidine-incorporated degradable lipids for versatile mRNA delivery in vivo. Nat. Chem. 16, 1687–1697 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Han, X. et al. Optimization of the activity and biodegradability of ionizable lipids for mRNA delivery via directed chemical evolution. Nat. Biomed. Eng. 8, 1412–1424 (2024).

    Article  PubMed  Google Scholar 

  • Xue, L. et al. Combinatorial design of siloxane-incorporated lipid nanoparticles augments intracellular processing for tissue-specific mRNA therapeutic delivery. Nat. Nanotechnol. https://doi.org/10.1038/s41565-024-01747-6 (2024).

  • Han, X. et al. Adjuvant lipidoid-substituted lipid nanoparticles augment the immunogenicity of SARS-CoV-2 mRNA vaccines. Nat. Nanotechnol. 18, 1105–1114 (2023).

    Article  PubMed  Google Scholar 

  • Han, X. et al. An ionizable lipid toolbox for RNA delivery. Nat. Commun. 12, 7233 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Dilliard, S. A. & Siegwart, D. J. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat. Rev. Mater. 8, 282–300 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article  PubMed  Google Scholar 

  • Billingsley, M. M. et al. Orthogonal design of experiments for optimization of lipid nanoparticles for mRNA engineering of CAR T cells. Nano Lett. 22, 533–542 (2022).

    Article  PubMed  Google Scholar 

  • Lokugamage, M. P. et al. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nat. Biomed. Eng. 5, 1059–1068 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel, S. et al. Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA. Nat. Commun. 11, 983 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lokugamage, M. P., Sago, C. D. & Dahlman, J. E. Testing thousands of nanoparticles in vivo using DNA barcodes. Curr. Opin. Biomed. Eng. 7, 1–8 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng, L., Bandara, S. R., Tan, Z. & Leal, C. Lipid nanoparticle topology regulates endosomal escape and delivery of RNA to the cytoplasm. Proc. Natl Acad. Sci. USA 120, e2301067120 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Koltover, I., Salditt, T., Rädler, J. O. & Safinya, C. R. An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science 281, 78–81 (1998).

    Article  PubMed  Google Scholar 

  • Álvarez-Benedicto, E. et al. Optimization of phospholipid chemistry for improved lipid nanoparticle (LNP) delivery of messenger RNA (mRNA). Biomater. Sci. 10, 549–559 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Herrera, M., Kim, J., Eygeris, Y., Jozic, A. & Sahay, G. Illuminating endosomal escape of polymorphic lipid nanoparticles that boost mRNA delivery. Biomater. Sci. 9, 4289–4300 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Radmand, A. et al. Cationic cholesterol-dependent LNP delivery to lung stem cells, the liver, and heart. Proc. Natl Acad. Sci. USA 121, e2307801120 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mui, B. L. et al. Influence of polyethylene glycol lipid desorption rates on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles. Mol. Ther. Nucleic Acids 2, e139 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gindy, M. E. et al. Mechanism of macromolecular structure evolution in self-assembled lipid nanoparticles for siRNA delivery. Langmuir 30, 4613–4622 (2014).

    Article  PubMed  Google Scholar 

  • Kauffman, K. J. et al. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett. 15, 7300–7306 (2015).

    Article  PubMed  Google Scholar 

  • Akinc, A. et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat. Biotechnol. 26, 561–569 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Billingsley, M. M. et al. Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering. Nano Lett. 20, 1578–1589 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitehead, K. A. et al. Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nat. Commun. 5, 4277 (2014).

    Article  PubMed  Google Scholar 

  • Hajj, K. A. et al. Branched-tail lipid nanoparticles potently deliver mRNA in vivo due to enhanced ionization at endosomal pH. Small 15, 1805097 (2019).

    Article  Google Scholar 

  • Yonezawa, S., Koide, H. & Asai, T. Recent advances in siRNA delivery mediated by lipid-based nanoparticles. Adv. Drug Deliv. Rev. 154, 64–78 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, H. et al. Circular RNA cancer vaccines drive immunity in hard-to-treat malignancies. Theranostics 12, 6422–6436 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • McKay, P. F. et al. Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice. Nat. Commun. 11, 3523 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Palanki, R. et al. Ionizable lipid nanoparticles for therapeutic base editing of congenital brain disease. ACS Nano 17, 13594–13610 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei, T. et al. Lung SORT LNPs enable precise homology-directed repair mediated CRISPR/Cas genome correction in cystic fibrosis models. Nat. Commun. 14, 7322 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Thatte, A. S. et al. mRNA lipid nanoparticles for ex vivo engineering of immunosuppressive T cells for autoimmunity therapies. Nano Lett. 23, 10179–10188 (2023).

    Article  PubMed  Google Scholar 

  • Billingsley, M. M. et al. In vivo mRNA CAR T cell engineering via targeted ionizable lipid nanoparticles with extrahepatic tropism. Small 20, 2304378 (2024).

    Article  Google Scholar 

  • Love, K. T. et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc. Natl Acad. Sci. USA 107, 1864–1869 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Forsyth, V., Rzeczycki, P., Taylor, D. & Ariosa, A. Enhancing transfection efficiency of primary immune cells through lipid nanoparticle mediated delivery. J. Immunol. 212, 0857_6526 (2024).

    Google Scholar 

  • Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun, Y. et al. In vivo editing of lung stem cells for durable gene correction in mice. Science 384, 1196–1202 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiu, M. et al. Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis. Proc. Natl Acad. Sci. USA 119, e2116271119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • LoPresti, S. T., Arral, M. L., Chaudhary, N. & Whitehead, K. A. The replacement of helper lipids with charged alternatives in lipid nanoparticles facilitates targeted mRNA delivery to the spleen and lungs. J. Control. Release 345, 819–831 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Omo-Lamai, S. et al. Physicochemical targeting of lipid nanoparticles to the lungs induces clotting: mechanisms and solutions. Adv. Mater. 36, 2312026 (2024).

    Article  Google Scholar 

  • Walkey, C. D. et al. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano 8, 2439–2455 (2014).

    Article  PubMed  Google Scholar 

  • Walkey, C. D., Olsen, J. B., Guo, H., Emili, A. & Chan, W. C. W. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 134, 2139–2147 (2012).

    Article  PubMed  Google Scholar 

  • Cai, R. et al. Dynamic intracellular exchange of nanomaterials’ protein corona perturbs proteostasis and remodels cell metabolism. Proc. Natl Acad. Sci. USA 119, e2200363119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Abdelkhaliq, A. et al. Impact of nanoparticle surface functionalization on the protein corona and cellular adhesion, uptake and transport. J. Nanobiotechnol. 16, 70 (2018).

    Article  Google Scholar 

  • Baimanov, D. et al. In situ analysis of nanoparticle soft corona and dynamic evolution. Nat. Commun. 13, 5389 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, Y. K., Choi, E.-J., Webster, T. J., Kim, S.-H. & Khang, D. Effect of the protein corona on nanoparticles for modulating cytotoxicity and immunotoxicity. Int. J. Nanomed. 10, 97–113 (2015).

    Google Scholar 

  • Mahmoudi, M., Landry, M. P., Moore, A. & Coreas, R. The protein corona from nanomedicine to environmental science. Nat. Rev. Mater. 8, 422–438 (2023).

    Article  Google Scholar 

  • Xu, Y. et al. AGILE platform: a deep learning powered approach to accelerate LNP development for mRNA delivery. Nat. Commun. 15, 6305 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng, L. et al. Machine learning elucidates design features of plasmid deoxyribonucleic acid lipid nanoparticles for cell type-preferential transfection. ACS Nano 18, 28735–28747 (2024).

    Article  PubMed  Google Scholar 

  • Dormán, G. The rise, fall and revival of combinatorial chemistry. Nachr. Chem. 70, 70–72 (2022).

    Article  Google Scholar 

  • Liu, Y. et al. Ultrastiff metamaterials generated through a multilayer strategy and topology optimization. Nat. Commun. 15, 2984 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ha, C. S. et al. Rapid inverse design of metamaterials based on prescribed mechanical behavior through machine learning. Nat. Commun. 14, 5765 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Coley, C. W. et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 365, eaax1566 (2019).

    Article  PubMed  Google Scholar 

  • Hashiba, K. et al. Branching ionizable lipids can enhance the stability, fusogenicity, and functional delivery of mRNA. Small Sci. 3, 2200071 (2023).

    Article  PubMed  Google Scholar 

  • Mukalel, A. J. et al. Oxidized mRNA lipid nanoparticles for in situ chimeric antigen receptor monocyte engineering. Adv. Funct. Mater. 34, 2312038 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Riley, R. S. et al. Ionizable lipid nanoparticles for in utero mRNA delivery. Sci. Adv. 7, eaba1028 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, J. et al. Combinatorial design of ionizable lipid nanoparticles for muscle-selective mRNA delivery with minimized off-target effects. Proc. Natl Acad. Sci. USA 120, e2309472120 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Fenton, O. S. et al. Synthesis and biological evaluation of ionizable lipid materials for the in vivo delivery of messenger RNA to B lymphocytes. Adv. Mater. 29, 1606944 (2017).

    Article  Google Scholar 

  • Fenton, O. S. et al. Bioinspired alkenyl amino alcohol ionizable lipid materials for highly potent in vivo mRNA delivery. Adv. Mater. 28, 2939–2943 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hatit, M. Z. C. et al. Nanoparticle stereochemistry-dependent endocytic processing improves in vivo mRNA delivery. Nat. Chem. 15, 508–515 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Da Silva Sanchez, A. J. et al. Substituting racemic ionizable lipids with stereopure ionizable lipids can increase mRNA delivery. J. Control. Release 353, 270–277 (2023).

    Article  PubMed  Google Scholar 

  • Li, Z. et al. Enzyme-catalyzed one-step synthesis of ionizable cationic lipids for lipid nanoparticle-based mRNA COVID-19 vaccines. ACS Nano 16, 18936–18950 (2022).

    Article  PubMed  Google Scholar 

  • Jacobsen, E. N. Asymmetric catalysis of epoxide ring-opening reactions. Acc. Chem. Res. 33, 421–431 (2000).

    Article  PubMed  Google Scholar 

  • Li, B. et al. Combinatorial design of nanoparticles for pulmonary mRNA delivery and genome editing. Nat. Biotechnol. 41, 1410–1415 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, J. et al. A fully automated platform for photoinitiated RAFT polymerization. Digit. Discov. 2, 219–233 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Götz, J. et al. High-throughput synthesis provides data for predicting molecular properties and reaction success. Sci. Adv. 9, eadj2314 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kong, F., Yuan, L., Zheng, Y. F. & Chen, W. Automatic liquid handling for life science: a critical review of the current state of the art. SLAS Technol. 17, 169–185 (2012).

    Article  Google Scholar 

  • Burger, B. et al. A mobile robotic chemist. Nature 583, 237–241 (2020).

    Article  PubMed  Google Scholar 

  • Dai, T. et al. Autonomous mobile robots for exploratory synthetic chemistry. Nature 635, 890–897 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Steiner, S. et al. Organic synthesis in a modular robotic system driven by a chemical programming language. Science 363, eaav2211 (2019).

    Article  PubMed  Google Scholar 

  • Nambiar, A. M. K. et al. Bayesian optimization of computer-proposed multistep synthetic routes on an automated robotic flow platform. ACS Cent. Sci. 8, 825–836 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Shields, B. J. et al. Bayesian reaction optimization as a tool for chemical synthesis. Nature 590, 89–96 (2021).

    Article  PubMed  Google Scholar 

  • Ahneman, D. T., Estrada, J. G., Lin, S., Dreher, S. D. & Doyle, A. G. Predicting reaction performance in C–N cross-coupling using machine learning. Science 360, 186–190 (2018).

    Article  PubMed  Google Scholar 

  • Fromer, J. C. & Coley, C. W. An algorithmic framework for synthetic cost-aware decision making in molecular design. Nat. Comput. Sci. 4, 440–450 (2024).

    Article  PubMed  Google Scholar 

  • Kyranos, J. N., Cai, H., Wei, D. & Goetzinger, W. K. High-throughput high-performance liquid chromatography/mass spectrometry for modern drug discovery. Curr. Opin. Biotechnol. 12, 105–111 (2001).

    Article  PubMed  Google Scholar 

  • Ginsburg-Moraff, C. et al. Integrated and automated high-throughput purification of libraries on microscale. SLAS Technol. 27, 350–360 (2022).

    Article  PubMed  Google Scholar 

  • Su, W.-C. et al. A platform method for simultaneous quantification of lipid and nucleic acid components in lipid nanoparticles. J. Chromatogr. A 1746, 465788 (2025).

    Article  PubMed  Google Scholar 

  • Munjoma, N. et al. High throughput LC-MS platform for large scale screening of bioactive polar lipids in human plasma and serum. J. Proteome Res. 21, 2596–2608 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Haas, C. P. et al. Open-source chromatographic data analysis for reaction optimization and screening. ACS Cent. Sci. 9, 307–317 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Herck, J. V. et al. Operator-independent high-throughput polymerization screening based on automated inline NMR and online SEC. Digit. Discov. 1, 519–526 (2022).

    Article  Google Scholar 

  • Ammini, G. D., Hooker, J. P., Herck, J. V., Kumar, A. & Junkers, T. Comprehensive high-throughput screening of photopolymerization under light intensity variation using inline NMR monitoring. Polym. Chem. 14, 2708–2716 (2023).

    Article  Google Scholar 

  • Hu, G. & Qiu, M. Machine learning-assisted structure annotation of natural products based on MS and NMR data. Nat. Prod. Rep. 40, 1735–1753 (2023).

    Article  PubMed  Google Scholar 

  • Kulkarni, J. A. et al. On the formation and morphology of lipid nanoparticles containing ionizable cationic lipids and siRNA. ACS Nano 12, 4787–4795 (2018).

    Article  PubMed  Google Scholar 

  • Maeki, M. et al. Understanding the formation mechanism of lipid nanoparticles in microfluidic devices with chaotic micromixers. PLoS ONE 12, e0187962 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung, H. N., Lee, S.-Y., Lee, S., Youn, H. & Im, H.-J. Lipid nanoparticles for delivery of RNA therapeutics: current status and the role of in vivo imaging. Theranostics 12, 7509–7531 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Strelkova Petersen, D. M., Chaudhary, N., Arral, M. L., Weiss, R. M. & Whitehead, K. A. The mixing method used to formulate lipid nanoparticles affects mRNA delivery efficacy and organ tropism. Eur. J. Pharm. Biopharm. 192, 126–135 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Padilla, M. et al. Solution biophysics identifies lipid nanoparticle non-sphericity, polydispersity, and dependence on internal ordering for efficacious mRNA delivery. Preprint at bioRxiv https://doi.org/10.1101/2024.12.19.629496 (2025).

  • Fan, Y. et al. Automated high-throughput preparation and characterization of oligonucleotide-loaded lipid nanoparticles. Int. J. Pharm. 599, 120392 (2021).

    Article  PubMed  Google Scholar 

  • Valente, I., Celasco, E., Marchisio, D. L. & Barresi, A. A. Nanoprecipitation in confined impinging jets mixers: production, characterization and scale-up of pegylated nanospheres and nanocapsules for pharmaceutical use. Chem. Eng. Sci. 77, 217–227 (2012).

    Article  Google Scholar 

  • He, Z. et al. Size-controlled lipid nanoparticle production using turbulent mixing to enhance oral DNA delivery. Acta Biomater. 81, 195–207 (2018).

    Article  PubMed  Google Scholar 

  • Shepherd, S. J. et al. Throughput-scalable manufacturing of SARS-CoV-2 mRNA lipid nanoparticle vaccines. Proc. Natl Acad. Sci. USA 120, e2303567120 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Shepherd, S. J. et al. Scalable mRNA and siRNA lipid nanoparticle production using a parallelized microfluidic device. Nano Lett. 21, 5671–5680 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammel, M. et al. Correlating the structure and gene silencing activity of oligonucleotide-loaded lipid nanoparticles using small-angle X-ray scattering. ACS Nano 17, 11454–11465 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Valencia, P. M., Farokhzad, O. C., Karnik, R. & Langer, R. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat. Nanotechnol. 7, 623–629 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kroth, I., Karimov, M. & Karongo, R. Automated preparation of oligonucleotide-loaded lipid nanoparticles using Andrew+TM pipetting robot for high-throughput in-vitro screening. Waters https://www.waters.com/content/dam/waters/en/app-notes/2023/720008090/720008090-en.pdf (2024).

  • Metzger, L. & Kind, M. On the mixing in confined impinging jet mixers — time scale analysis and scale-up using CFD coarse-graining methods. Chem. Eng. Res. Des. 109, 464–476 (2016).

    Article  Google Scholar 

  • Shepherd, S. J., Issadore, D. & Mitchell, M. J. Microfluidic formulation of nanoparticles for biomedical applications. Biomaterials 274, 120826 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sreenivasan, K. R. & Antonia, R. A. The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29, 435–472 (1997).

    Article  Google Scholar 

  • Feng, J., Markwalter, C. E., Tian, C., Armstrong, M. & Prud’homme, R. K. Translational formulation of nanoparticle therapeutics from laboratory discovery to clinical scale. J. Transl. Med. 17, 200 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilhelm, E., Neumann, C., Duttenhofer, T., Pires, L. & Rapp, B. E. Connecting microfluidic chips using a chemically inert, reversible, multichannel chip-to-world-interface. Lab Chip 13, 4343–4351 (2013).

    Article  PubMed  Google Scholar 

  • Ripoll, M. et al. Optimal self-assembly of lipid nanoparticles (LNP) in a ring micromixer. Sci. Rep. 12, 9483 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimura, N. et al. Development of a microfluidic-based post-treatment process for size-controlled lipid nanoparticles and application to siRNA delivery. ACS Appl. Mater. Interfaces 12, 34011–34020 (2020).

    Article  PubMed  Google Scholar 

  • Chen, D. et al. Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. J. Am. Chem. Soc. 134, 6948–6951 (2012).

    Article  PubMed  Google Scholar 

  • Belliveau, N. M. et al. Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol. Ther. Nucleic Acids 1, e37 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Leung, A. K. K., Tam, Y. Y. C., Chen, S., Hafez, I. M. & Cullis, P. R. Microfluidic mixing: a general method for encapsulating macromolecules in lipid nanoparticle systems. J. Phys. Chem. B 119, 8698–8706 (2015).

    Article  PubMed  Google Scholar 

  • Williams, M. S., Longmuir, K. J. & Yager, P. A practical guide to the staggered herringbone mixer. Lab Chip 8, 1121–1129 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Longwell, S. A. & Fordyce, P. M. micrIO: an open-source autosampler and fraction collector for automated microfluidic input–output. Lab Chip 20, 93–106 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanna, A. R. et al. Automated and parallelized microfluidic generation of large and precisely-defined lipid nanoparticle libraries. Preprint at bioRxiv https://doi.org/10.1101/2025.05.26.656157 (2025).

  • Nag, K. et al. DoE-derived continuous and robust process for manufacturing of pharmaceutical-grade wide-range LNPs for RNA-vaccine/drug delivery. Sci. Rep. 12, 9394 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • McLeod, E. et al. High-throughput and label-free single nanoparticle sizing based on time-resolved on-chip microscopy. ACS Nano 9, 3265–3273 (2015).

    Article  PubMed  Google Scholar 

  • Graewert, M. A. et al. Quantitative size-resolved characterization of mRNA nanoparticles by in-line coupling of asymmetrical-flow field-flow fractionation with small angle X-ray scattering. Sci. Rep. 13, 15764 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, S. et al. Payload distribution and capacity of mRNA lipid nanoparticles. Nat. Commun. 13, 5561 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, S. et al. Single-particle spectroscopic chromatography reveals heterogeneous RNA loading and size correlations in lipid nanoparticles. ACS Nano 18, 15729–15743 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Penders, J. et al. Single particle automated Raman trapping analysis. Nat. Commun. 9, 4256 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lowenthal, M. S., Antonishek, A. S. & Phinney, K. W. Quantification of mRNA in lipid nanoparticles using mass spectrometry. Anal. Chem. 96, 1214–1222 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Medina, J. et al. Omic-scale high-throughput quantitative LC–MS/MS approach for circulatory lipid phenotyping in clinical research. Anal. Chem. 95, 3168–3179 (2023).

    Article  PubMed  Google Scholar 

  • Kinsey, C. et al. Determination of lipid content and stability in lipid nanoparticles using ultra high-performance liquid chromatography in combination with a corona charged aerosol detector. Electrophoresis 43, 1091–1100 (2022).

    Article  PubMed  Google Scholar 

  • Cui, H. et al. LUMI-lab: a foundation model-driven autonomous platform enabling discovery of new ionizable lipid designs for mRNA delivery. Preprint at bioRxiv https://doi.org/10.1101/2025.02.14.638383 (2025).

  • Maharjan, R., Kim, K. H., Lee, K., Han, H.-K. & Jeong, S. H. Machine learning-driven optimization of mRNA-lipid nanoparticle vaccine quality with XGBoost/Bayesian method and ensemble model approaches. J. Pharm. Anal. 14, 100996 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Stach, E. et al. Autonomous experimentation systems for materials development: a community perspective. Matter 4, 2702–2726 (2021).

    Article  Google Scholar 

  • Land, O., Seider, W. D. & Lee, D. Convolutional neural network augmented soft-sensor for autonomous microfluidic production of uniform bubbles. Chem. Eng. J. 499, 156494 (2024).

    Article  Google Scholar 

  • Szymanski, N. J. et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624, 86–91 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, J. et al. Navigating phase diagram complexity to guide robotic inorganic materials synthesis. Nat. Synth. 3, 606–614 (2024).

    Article  Google Scholar 

  • Kusne, A. G. et al. On-the-fly closed-loop materials discovery via Bayesian active learning. Nat. Commun. 11, 5966 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jan, E. et al. High-content screening as a universal tool for fingerprinting of cytotoxicity of nanoparticles. ACS Nano 2, 928–938 (2008).

    Article  PubMed  Google Scholar 

  • Frei, A. P. et al. Highly multiplexed simultaneous detection of RNAs and proteins in single cells. Nat. Methods 13, 269–275 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Krohn-Grimberghe, M. et al. Nanoparticle-encapsulated siRNAs for gene silencing in the haematopoietic stem-cell niche. Nat. Biomed. Eng. 4, 1076–1089 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Connors, J. et al. Lipid nanoparticles (LNP) induce activation and maturation of antigen presenting cells in young and aged individuals. Commun. Biol. 6, 188 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Haley, R. M. et al. Lipid nanoparticle delivery of small proteins for potent in vivo RAS inhibition. ACS Appl. Mater. Interfaces 15, 21877–21892 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Han, E. L. et al. Predictive high-throughput platform for dual screening of mRNA lipid nanoparticle blood-brain barrier transfection and crossing. Nano Lett. 24, 1477–1486 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, R., Jiang, W., Walkey, C. D., Chan, W. C. W. & Cohen, Y. Prediction of nanoparticles-cell association based on corona proteins and physicochemical properties. Nanoscale 7, 9664–9675 (2015).

    Article  PubMed  Google Scholar 

  • Alabi, C. A. et al. Multiparametric approach for the evaluation of lipid nanoparticles for siRNA delivery. Proc. Natl Acad. Sci. USA 110, 12881–12886 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Roosa, C. A. et al. Conjugation of IL-33 to microporous annealed particle scaffolds enhances type 2-like immune responses in vitro and in vivo. Adv. Healthc. Mater. 13, 2400249 (2024).

    Article  Google Scholar 

  • Sahay, G. et al. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat. Biotechnol. 31, 653–658 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rui, Y. et al. High-throughput and high-content bioassay enables tuning of polyester nanoparticles for cellular uptake, endosomal escape, and systemic in vivo delivery of mRNA. Sci. Adv. 8, eabk2855 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ponsoda, X., Jover, R., Castell, J. V. & Gómez-Lechón, M. J. Measurement of intracellular LDH activity in 96-well cultures: a rapid and automated assay for cytotoxicity studies. J. Tissue Cult. Methods 13, 21–24 (1991).

    Article  Google Scholar 

  • Marin, D. et al. Safety, efficacy and determinants of response of allogeneic CD19-specific CAR-NK cells in CD19+ B cell tumors: a phase 1/2 trial. Nat. Med. 30, 772–784 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Dahlman, J. E. et al. Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proc. Natl Acad. Sci. USA 114, 2060–2065 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, J., Vaughan, H. J., Zamboni, C. G., Sunshine, J. C. & Green, J. J. High-throughput evaluation of polymeric nanoparticles for tissue-targeted gene expression using barcoded plasmid DNA. J. Control. Release 337, 105–116 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Guimaraes, P. P. G. et al. Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening. J. Control. Release 316, 404–417 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rhym, L. H., Manan, R. S., Koller, A., Stephanie, G. & Anderson, D. G. Peptide-encoding mRNA barcodes for the high-throughput in vivo screening of libraries of lipid nanoparticles for mRNA delivery. Nat. Biomed. Eng. 7, 901–910 (2023).

    Article  PubMed  Google Scholar 

  • Vaidya, K. et al. Pooled nanoparticle screening using a chemical barcoding approach. Angew. Chem. Int. Ed. 137, e202420052 (2025).

    Article  Google Scholar 

  • Boehnke, N. et al. Massively parallel pooled screening reveals genomic determinants of nanoparticle delivery. Science 377, eabm5551 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • El‐Mayta, R. et al. A nanoparticle platform for accelerated in vivo oral delivery screening of nucleic acids. Adv. Ther. 4, 2000111 (2021).

    Article  Google Scholar 

  • Hatit, M. Z. C. et al. Species-dependent in vivo mRNA delivery and cellular responses to nanoparticles. Nat. Nanotechnol. 17, 310–318 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamilton, A. G. et al. High-throughput in vivo screening identifies differential influences on mRNA lipid nanoparticle immune cell delivery by administration route. ACS Nano 18, 16151–16165 (2024).

    Article  PubMed  Google Scholar 

  • Dobrowolski, C. et al. Nanoparticle single-cell multiomic readouts reveal that cell heterogeneity influences lipid nanoparticle-mediated messenger RNA delivery. Nat. Nanotechnol. 17, 871–879 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Q. et al. Predictable control of RNA lifetime using engineered degradation-tuning RNAs. Nat. Chem. Biol. 17, 828–836 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruchez, M., Moronne, M., Gin, P., Weiss, S. & Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998).

    Article  PubMed  Google Scholar 

  • Paunovska, K. et al. A direct comparison of in vitro and in vivo nucleic acid delivery mediated by hundreds of nanoparticles reveals a weak correlation. Nano Lett. 18, 2148–2157 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sago, C. D. et al. High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing. Proc. Natl Acad. Sci. USA 115, E9944–E9952 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Buschmann, T. & Bystrykh, L. V. Levenshtein error-correcting barcodes for multiplexed DNA sequencing. BMC Bioinform. 14, 272 (2013).

    Article  Google Scholar 

  • Witten, J. et al. Artificial intelligence-guided design of lipid nanoparticles for pulmonary gene therapy. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02490-y (2024).

  • Cervantes, J., Garcia-Lamont, F., Rodríguez-Mazahua, L. & Lopez, A. A comprehensive survey on support vector machine classification: applications, challenges and trends. Neurocomputing 408, 189–215 (2020).

    Article  Google Scholar 

  • Yamankurt, G. et al. Exploration of the nanomedicine-design space with high-throughput screening and machine learning. Nat. Biomed. Eng. 3, 318–327 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar, R. et al. Efficient polymer-mediated delivery of gene-editing ribonucleoprotein payloads through combinatorial design, parallelized experimentation, and machine learning. ACS Nano 14, 17626–17639 (2020).

    Article  PubMed  Google Scholar 

  • Pattipeiluhu, R. et al. Anionic lipid nanoparticles preferentially deliver mRNA to the hepatic reticuloendothelial system. Adv. Mater. 34, 2201095 (2022).

    Article  Google Scholar 

  • Mandl, H. K. et al. Optimizing biodegradable nanoparticle size for tissue-specific delivery. J. Control. Release 314, 92–101 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Popova, M., Isayev, O. & Tropsha, A. Deep reinforcement learning for de novo drug design. Sci. Adv. 4, eaap7885 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tropsha, A., Isayev, O., Varnek, A., Schneider, G. & Cherkasov, A. Integrating QSAR modelling and deep learning in drug discovery: the emergence of deep QSAR. Nat. Rev. Drug Discov. 23, 141–155 (2024).

    Article  PubMed  Google Scholar 

  • Walsh, D. J. et al. Community Resource for Innovation in Polymer Technology (CRIPT): a scalable polymer material data structure. ACS Cent. Sci. 9, 330–338 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuenneth, C. & Ramprasad, R. polyBERT: a chemical language model to enable fully machine-driven ultrafast polymer informatics. Nat. Commun. 14, 4099 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer, T. A., Ramirez, C., Tamasi, M. J. & Gormley, A. J. A user’s guide to machine learning for polymeric biomaterials. ACS Polym. Au 3, 141–157 (2023).

    Article  PubMed  Google Scholar 

  • Xue, K. et al. Biomaterials by design: harnessing data for future development. Mater. Today Bio 12, 100165 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Haley, R. M. et al. Lipid nanoparticles for in vivo lung delivery of CRISPR-Cas9 ribonucleoproteins allow gene editing of clinical targets. ACS Nano 19, 13790–13804 (2025).

    Article  PubMed  Google Scholar 

  • Tang, C. et al. mRNA-laden lipid-nanoparticle-enabled in situ CAR-macrophage engineering for the eradication of multidrug-resistant bacteria in a sepsis mouse model. ACS Nano 18, 2261–2278 (2024).

    Article  PubMed  Google Scholar