References
-
Jensen, B. et al. Sustainable Raw Materials Will Drive Profitability for Fashion and Apparel Brands (Boston Consulting Group, 2023).
-
Chakrapani, G., Zare, M. & Ramakrishna, S. Biomaterials from the value-added food wastes. Bioresource Technol. Rep. 19, 101181. https://doi.org/10.1016/j.biteb.2022.101181 (2022).
-
Sharma, P. et al. Valorization of citrus Peel waste for the sustainable production of value-added products. Bioresour. Technol. 351, 127064. https://doi.org/10.1016/j.biortech.2022.127064 (2022).
-
Suri, S., Singh, A. & Nema, P. K. Current applications of citrus fruit processing waste: A scientific outlook. Appl. Food Res. 2, 100050. https://doi.org/10.1016/j.afres.2022.100050 (2022).
-
Boluda-Aguilar, M. & López-Gómez, A. Production of bioethanol by fermentation of lemon (Citrus Limon L.) Peel wastes pretreated with steam explosion. Ind. Crops Prod. 41, 188–197. https://doi.org/10.1016/j.indcrop.2012.04.031 (2013).
-
Ververis, C. et al. Cellulose, hemicelluloses, lignin and Ash content of some organic materials and their suitability for use as paper pulp supplements. Bioresour. Technol. 98, 296–301. https://doi.org/10.1016/j.biortech.2006.01.007 (2007).
-
Ruiz, H. A., Rodríguez-Jasso, R. M., Rodríguez, R., Contreras-Esquivel, J. C. & Aguilar, C. N. Pectinase production from lemon Peel pomace as support and carbon source in solid-state fermentation column-tray bioreactor. Biochem. Eng. J. 65, 90–95. https://doi.org/10.1016/j.bej.2012.03.007 (2012).
-
Gooruee, R., Hojjati, M., Behbahani, B. A., Shahbazi, S. & Askari, H. Extracellular enzyme production by different species of trichoderma fungus for lemon Peel waste bioconversion. Biomass Convers. Biorefinery. https://doi.org/10.1007/s13399-022-02626-7 (2022).
-
Arnau, J., Yaver, D. & Hjort, C. M. Strategies and challenges for the development of industrial enzymes using fungal cell Factories. (Grand challenges in fungal biotechnology. 2019 Sep. 27, 179–210. https://doi.org/10.1007/978-3-030-29541-7_7 (2019). eCollection 2020.
-
Delattre, C. et al. Elsevier,. in Current Developments in Biotechnology and Bioengineering (eds Mohammad J. Taherzadeh, Jorge A. Ferreira, & Ashok Pandey) 497–532 (2023).
-
Dzurendova, S., Losada, C. B., Dupuy-Galet, B. X., Fjær, K. & Shapaval, V. Mucoromycota fungi as powerful cell factories for modern biorefinery. Appl. Microbiol. Biotechnol. 106, 101–115. https://doi.org/10.1007/s00253-021-11720-1 (2022).
-
Naranjo-Ortiz, M. A. & Gabaldón, T. Fungal evolution: diversity, taxonomy and phylogeny of the fungi. Biol. Rev. 94, 2101–2137. https://doi.org/10.1111/brv.12550 (2019).
-
Wijayarathna, E. R. K. B. et al. Tunable Fungal Monofilaments from Food Waste for Textile Applications. Global Challenges n/a 2300098, https://doi.org/10.1002/gch2.202300098 (2023).
-
Svensson, S. E., Ferreira, J. A., Hakkarainen, M., Adolfsson, K. H. & Zamani, A. Fungal textiles: wet spinning of fungal microfibers to produce monofilament yarns. Sustainable Mater. Technol. 28, e00256–e00256. https://doi.org/10.1016/j.susmat.2021.e00256 (2021).
-
Ciriminna, R. et al. Nanocellulose and microcrystalline cellulose from citrus processing waste: A review. Int. J. Biol. Macromol. 281, 135865. https://doi.org/10.1016/j.ijbiomac.2024.135865 (2024).
-
Hideno, A., Abe, K. & Yano, H. Preparation using pectinase and characterization of nanofibers from orange Peel waste in juice factories. J. Food Sci. 79, N1218–N1224. https://doi.org/10.1111/1750-3841.12471 (2014).
-
Hiasa, S., Iwamoto, S., Endo, T. & Edashige, Y. Isolation of cellulose nanofibrils from Mandarin (Citrus unshiu) Peel waste. Ind. Crops Prod. 62, 280–285. https://doi.org/10.1016/j.indcrop.2014.08.007 (2014).
-
Berglund, L., Noël, M., Aitomäki, Y., Öman, T. & Oksman, K. Production potential of cellulose nanofibers from industrial residues: efficiency and nanofiber characteristics. Ind. Crops Prod. 92, 84–92. https://doi.org/10.1016/j.indcrop.2016.08.003 (2016).
-
Hooshmand, S., Aitomäki, Y., Norberg, N., Mathew, A. P. & Oksman, K. Dry-Spun Single-Filament fibers comprising solely cellulose nanofibers from bioresidue. ACS Appl. Mater. Interfaces. 7, 13022–13028. https://doi.org/10.1021/acsami.5b03091 (2015).
-
Marhendraswari, M. et al. Production of edible fungal (Rhizopus Delemar CBS 145940) biomass from organosolv-pretreated oil palm empty fruit bunch (OPEFB) in submerged fermentation. IOP Conf. Series: Mater. Sci. Eng. 991, 12041–12041. https://doi.org/10.1088/1757-899x/991/1/012041 (2020).
-
Mohammadi, M., Zamani, A. & Karimi, K. Determination of glucosamine in fungal cell walls by High-Performance liquid chromatography (HPLC). J. Agric. Food Chem. 60, 10511–10515. https://doi.org/10.1021/jf303488w (2012).
-
Bhardwaj, S., Singh, S., Meda, R. S., Jain, S. & Maji, P. K. Structural and morphological exploration of cellulose nanocrystals extracted from lignocellulosic waste biomass of brassica Nigra (mustard straw). Biomass Convers. Biorefinery. https://doi.org/10.1007/s13399-023-03970-y (2023).
-
TAPPI. in. Ash in Wood, Pulp, Paper, and Paperboard: Combustion At 525°C (Tappi Press Atlanta, 2015).
-
Wojdyr, M. Fityk: a general-purpose peak fitting program. J. Appl. Crystallogr. 43, 1126–1128. https://doi.org/10.1107/S0021889810030499 (2010).
-
Segal, L., Creely, J. J., MartinJr, A. E. & Conrad, C. M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Text. Res. J. 29, 786–794. https://doi.org/10.1177/004051755902901003 (1959).
-
Lindh, A. et al. Dry gel spinning of fungal hydrogels for the development of renewable yarns from food waste. Fungal Biology Biotechnol. 11, https://doi.org/10.1186/s40694-024-00178-1 (2024).
-
Nečas, D. & Klapetek, P. Gwyddion: an open-source software for SPM data analysis. Cent. Eur. J. Phys. 10, 181–188. https://doi.org/10.2478/s11534-011-0096-2 (2012).
-
Lizundia, E., Luzi, F. & Puglia, D. Organic waste valorisation towards circular and sustainable biocomposites. Green Chem. 24, 5429–5459. https://doi.org/10.1039/D2GC01668K (2022).
-
Chew, S. Y. & Than, L. T. L. in Encyclopedia of Mycology (eds Óscar Zaragoza & Arturo Casadevall) 220–229Elsevier, (2021).
-
Karimi, S., Agnihotri, S., Ferreira, J. A. & Taherzadeh, M. J. Evaluating three fungal biomasses grown on diluted thin stillage as potential fish feed ingredients. Bioresource Technol. Rep. 24, 101677. https://doi.org/10.1016/j.biteb.2023.101677 (2023).
-
Svensson, S. E. et al. Turning food waste to antibacterial and biocompatible fungal chitin/chitosan monofilaments. Int. J. Biol. Macromol. 209, 618–630. https://doi.org/10.1016/j.ijbiomac.2022.04.031 (2022).
-
Fernando, L. D. et al. Structural polymorphism of Chitin and Chitosan in fungal cell walls from Solid-State NMR and principal component analysis. Front. Mol. Biosci. 8, 814–814. https://doi.org/10.3389/fmolb.2021.727053 (2021).
-
Sarkar, D. et al. Diffusion in intact secondary cell wall models of plants at different equilibrium moisture content. Cell. Surf. 9, 100105. https://doi.org/10.1016/j.tcsw.2023.100105 (2023).
-
Gualdani, R., Cavalluzzi, M. M., Lentini, G. & Habtemariam, S. The chemistry and Pharmacology of citrus limonoids. Molecules 21, 1530.https://doi.org/10.3390/molecules21111530 (2016).
-
Munir, H. et al. Unveiling the Chemistry of Citrus Peel: Insights into Nutraceutical Potential and Therapeutic Applications. Foods 13, 1681. https://doi.org/10.3390/foods13111681. (2024).
-
Rodrigues, R. C. L. B. et al. Comprehensive approach of methods for microstructural analysis and analytical tools in lignocellulosic biomass assessment – A review. Bioresour. Technol. 348, 126627. https://doi.org/10.1016/j.biortech.2021.126627 (2022).
-
Shen, D. K. & Gu, S. The mechanism for thermal decomposition of cellulose and its main products. Bioresour. Technol. 100, 6496–6504. https://doi.org/10.1016/j.biortech.2009.06.095 (2009).
-
Migneault, S., Ahmed, K., Perré, P. & and Effect of fiber Origin, Proportion, and chemical composition on the mechanical and physical properties of Wood-Plastic composites. J. Wood Chem. Technol. 34, 241–261. https://doi.org/10.1080/02773813.2013.869604 (2014).
-
Yang, H., Yan, R., Chen, H., Lee, D. H. & Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013 (2007).
-
Chandrasekar, C. M. et al. Valorization of citrus Peel industrial wastes for facile extraction of extractives, pectin, and cellulose nanocrystals through ultrasonication: an in-depth investigation. Carbohydr. Polym. 344, 122539. https://doi.org/10.1016/j.carbpol.2024.122539 (2024).
-
Yue, K. et al. Experimental analysis of thermally-treated Chinese Poplar wood with focus on structural application. Ind. Crops Prod. 197, 116612. https://doi.org/10.1016/j.indcrop.2023.116612 (2023).
-
Chien, Y. C. et al. Effects of heat treatment on the chemical compositions and thermal decomposition kinetics of Japanese Cedar and Beech wood. Polym. Degrad. Stab. 158, 220–227. https://doi.org/10.1016/j.polymdegradstab.2018.11.003 (2018).
-
Salem, K. S. et al. Comparison and assessment of methods for cellulose crystallinity determination. Chem. Soc. Rev. 52, 6417–6446. https://doi.org/10.1039/D2CS00569G (2023).
-
Sun, R. & Tomkinson, J. Comparative study of lignins isolated by alkali and ultrasound-assisted alkali extractions from wheat straw. Ultrason. Sonochem. 9, 85–93. https://doi.org/10.1016/S1350-4177(01)00106-7 (2002).
-
Makarem, M. et al. Impact of drying on Meso- and nanoscale structures of citrus fiber: A study by SFG. DLS Industrial Eng. Chem. Res. 59, 2718–2724. https://doi.org/10.1021/acs.iecr.9b06194 (2020). ATR-IR, XRD.
-
Underhill, S. J. R. et al. ‘EUREKA’ LEMONS CAUSED BY STATIC COMPRESSION AND IMPACT LOADING J. Texture Stud. 29, 437–452, doi:https://doi.org/10.1111/j.1745-4603.1998.tb00815.x (1998).
-
Gong, G., Mathew, A. P. & Oksman, K. Strong aqueous gels of cellulose nanofibers and nanowhiskers isolated from softwood flour. Tappi J. 10, 42565 (2011).
-
Yaneva, Z., Ivanova, D., Nikolova, N. & Tzanova, M. The 21st century revival of Chitosan in service to bio-organic chemistry. Biotechnol. Biotechnol. Equip. 34, 221–237. https://doi.org/10.1080/13102818.2020.1731333 (2020).
-
Wijayarathna, E. R. K. B. et al. Tunable fungal monofilaments from food waste for textile applications. Global Challenges. 8, 2300098. https://doi.org/10.1002/gch2.202300098 (2024).
-
Hooshmand, S., Aitomäki, Y., Norberg, N., Mathew, A. P. & Oksman, K. Dry-Spun Single-Filament fibers comprising solely cellulose nanofibers from bioresidue. ACS Appl. Mater. Interfaces. 7, 13022–13028. https://doi.org/10.1021/acsami.5b03091 (2015).
-
Hooshmand, S., Aitomäki, Y., Berglund, L., Mathew, A. P. & Oksman, K. Enhanced alignment and mechanical properties through the use of hydroxyethyl cellulose in solvent-free native cellulose spun filaments. Compos. Sci. Technol. 150, 79–86. https://doi.org/10.1016/j.compscitech.2017.07.011 (2017).
-
Shen, Y. et al. High velocity dry spinning of nanofibrillated cellulose (CNF) filaments on an adhesion controlled surface with low friction. Cellulose 23, 3393–3398. https://doi.org/10.1007/s10570-016-1044-5 (2016).
-
Kalia, S. et al. Cellulose-Based Bio- and Nanocomposites: A Review. International Journal of Polymer Science 837875, (2011). https://doi.org/10.1155/2011/837875 (2011).
-
Ambaye, T. G., Vaccari, M., Prasad, S., van Hullebusch, E. D. & Rtimi, S. Preparation and applications of Chitosan and cellulose composite materials. J. Environ. Manage. 301, 113850. https://doi.org/10.1016/j.jenvman.2021.113850 (2022).
-
Wahba, M. I. Enhancement of the mechanical properties of Chitosan. J. Biomater. Sci. Polym. Ed. 31, 350–375. https://doi.org/10.1080/09205063.2019.1692641 (2020).
