Holistic valorisation of lemon peel into textile materials via fungal chitosan and micro-nano fibrillated cellulose

holistic-valorisation-of-lemon-peel-into-textile-materials-via-fungal-chitosan-and-micro-nano-fibrillated-cellulose
Holistic valorisation of lemon peel into textile materials via fungal chitosan and micro-nano fibrillated cellulose

References

  1. Jensen, B. et al. Sustainable Raw Materials Will Drive Profitability for Fashion and Apparel Brands (Boston Consulting Group, 2023).

  2. Chakrapani, G., Zare, M. & Ramakrishna, S. Biomaterials from the value-added food wastes. Bioresource Technol. Rep. 19, 101181. https://doi.org/10.1016/j.biteb.2022.101181 (2022).

    Google Scholar 

  3. Sharma, P. et al. Valorization of citrus Peel waste for the sustainable production of value-added products. Bioresour. Technol. 351, 127064. https://doi.org/10.1016/j.biortech.2022.127064 (2022).

    Google Scholar 

  4. Suri, S., Singh, A. & Nema, P. K. Current applications of citrus fruit processing waste: A scientific outlook. Appl. Food Res. 2, 100050. https://doi.org/10.1016/j.afres.2022.100050 (2022).

    Google Scholar 

  5. Boluda-Aguilar, M. & López-Gómez, A. Production of bioethanol by fermentation of lemon (Citrus Limon L.) Peel wastes pretreated with steam explosion. Ind. Crops Prod. 41, 188–197. https://doi.org/10.1016/j.indcrop.2012.04.031 (2013).

    Google Scholar 

  6. Ververis, C. et al. Cellulose, hemicelluloses, lignin and Ash content of some organic materials and their suitability for use as paper pulp supplements. Bioresour. Technol. 98, 296–301. https://doi.org/10.1016/j.biortech.2006.01.007 (2007).

    Google Scholar 

  7. Ruiz, H. A., Rodríguez-Jasso, R. M., Rodríguez, R., Contreras-Esquivel, J. C. & Aguilar, C. N. Pectinase production from lemon Peel pomace as support and carbon source in solid-state fermentation column-tray bioreactor. Biochem. Eng. J. 65, 90–95. https://doi.org/10.1016/j.bej.2012.03.007 (2012).

    Google Scholar 

  8. Gooruee, R., Hojjati, M., Behbahani, B. A., Shahbazi, S. & Askari, H. Extracellular enzyme production by different species of trichoderma fungus for lemon Peel waste bioconversion. Biomass Convers. Biorefinery. https://doi.org/10.1007/s13399-022-02626-7 (2022).

    Google Scholar 

  9. Arnau, J., Yaver, D. & Hjort, C. M. Strategies and challenges for the development of industrial enzymes using fungal cell Factories. (Grand challenges in fungal biotechnology. 2019 Sep. 27, 179–210. https://doi.org/10.1007/978-3-030-29541-7_7 (2019). eCollection 2020.

    Google Scholar 

  10. Delattre, C. et al. Elsevier,. in Current Developments in Biotechnology and Bioengineering (eds Mohammad J. Taherzadeh, Jorge A. Ferreira, & Ashok Pandey) 497–532 (2023).

  11. Dzurendova, S., Losada, C. B., Dupuy-Galet, B. X., Fjær, K. & Shapaval, V. Mucoromycota fungi as powerful cell factories for modern biorefinery. Appl. Microbiol. Biotechnol. 106, 101–115. https://doi.org/10.1007/s00253-021-11720-1 (2022).

    Google Scholar 

  12. Naranjo-Ortiz, M. A. & Gabaldón, T. Fungal evolution: diversity, taxonomy and phylogeny of the fungi. Biol. Rev. 94, 2101–2137. https://doi.org/10.1111/brv.12550 (2019).

    Google Scholar 

  13. Wijayarathna, E. R. K. B. et al. Tunable Fungal Monofilaments from Food Waste for Textile Applications. Global Challenges n/a 2300098, https://doi.org/10.1002/gch2.202300098 (2023).

  14. Svensson, S. E., Ferreira, J. A., Hakkarainen, M., Adolfsson, K. H. & Zamani, A. Fungal textiles: wet spinning of fungal microfibers to produce monofilament yarns. Sustainable Mater. Technol. 28, e00256–e00256. https://doi.org/10.1016/j.susmat.2021.e00256 (2021).

    Google Scholar 

  15. Ciriminna, R. et al. Nanocellulose and microcrystalline cellulose from citrus processing waste: A review. Int. J. Biol. Macromol. 281, 135865. https://doi.org/10.1016/j.ijbiomac.2024.135865 (2024).

    Google Scholar 

  16. Hideno, A., Abe, K. & Yano, H. Preparation using pectinase and characterization of nanofibers from orange Peel waste in juice factories. J. Food Sci. 79, N1218–N1224. https://doi.org/10.1111/1750-3841.12471 (2014).

    Google Scholar 

  17. Hiasa, S., Iwamoto, S., Endo, T. & Edashige, Y. Isolation of cellulose nanofibrils from Mandarin (Citrus unshiu) Peel waste. Ind. Crops Prod. 62, 280–285. https://doi.org/10.1016/j.indcrop.2014.08.007 (2014).

    Google Scholar 

  18. Berglund, L., Noël, M., Aitomäki, Y., Öman, T. & Oksman, K. Production potential of cellulose nanofibers from industrial residues: efficiency and nanofiber characteristics. Ind. Crops Prod. 92, 84–92. https://doi.org/10.1016/j.indcrop.2016.08.003 (2016).

    Google Scholar 

  19. Hooshmand, S., Aitomäki, Y., Norberg, N., Mathew, A. P. & Oksman, K. Dry-Spun Single-Filament fibers comprising solely cellulose nanofibers from bioresidue. ACS Appl. Mater. Interfaces. 7, 13022–13028. https://doi.org/10.1021/acsami.5b03091 (2015).

    Google Scholar 

  20. Marhendraswari, M. et al. Production of edible fungal (Rhizopus Delemar CBS 145940) biomass from organosolv-pretreated oil palm empty fruit bunch (OPEFB) in submerged fermentation. IOP Conf. Series: Mater. Sci. Eng. 991, 12041–12041. https://doi.org/10.1088/1757-899x/991/1/012041 (2020).

    Google Scholar 

  21. Mohammadi, M., Zamani, A. & Karimi, K. Determination of glucosamine in fungal cell walls by High-Performance liquid chromatography (HPLC). J. Agric. Food Chem. 60, 10511–10515. https://doi.org/10.1021/jf303488w (2012).

    Google Scholar 

  22. Bhardwaj, S., Singh, S., Meda, R. S., Jain, S. & Maji, P. K. Structural and morphological exploration of cellulose nanocrystals extracted from lignocellulosic waste biomass of brassica Nigra (mustard straw). Biomass Convers. Biorefinery. https://doi.org/10.1007/s13399-023-03970-y (2023).

    Google Scholar 

  23. TAPPI. in. Ash in Wood, Pulp, Paper, and Paperboard: Combustion At 525°C (Tappi Press Atlanta, 2015).

  24. Wojdyr, M. Fityk: a general-purpose peak fitting program. J. Appl. Crystallogr. 43, 1126–1128. https://doi.org/10.1107/S0021889810030499 (2010).

    Google Scholar 

  25. Segal, L., Creely, J. J., MartinJr, A. E. & Conrad, C. M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Text. Res. J. 29, 786–794. https://doi.org/10.1177/004051755902901003 (1959).

    Google Scholar 

  26. Lindh, A. et al. Dry gel spinning of fungal hydrogels for the development of renewable yarns from food waste. Fungal Biology Biotechnol. 11, https://doi.org/10.1186/s40694-024-00178-1 (2024).

  27. Nečas, D. & Klapetek, P. Gwyddion: an open-source software for SPM data analysis. Cent. Eur. J. Phys. 10, 181–188. https://doi.org/10.2478/s11534-011-0096-2 (2012).

    Google Scholar 

  28. Lizundia, E., Luzi, F. & Puglia, D. Organic waste valorisation towards circular and sustainable biocomposites. Green Chem. 24, 5429–5459. https://doi.org/10.1039/D2GC01668K (2022).

    Google Scholar 

  29. Chew, S. Y. & Than, L. T. L. in Encyclopedia of Mycology (eds Óscar Zaragoza & Arturo Casadevall) 220–229Elsevier, (2021).

  30. Karimi, S., Agnihotri, S., Ferreira, J. A. & Taherzadeh, M. J. Evaluating three fungal biomasses grown on diluted thin stillage as potential fish feed ingredients. Bioresource Technol. Rep. 24, 101677. https://doi.org/10.1016/j.biteb.2023.101677 (2023).

    Google Scholar 

  31. Svensson, S. E. et al. Turning food waste to antibacterial and biocompatible fungal chitin/chitosan monofilaments. Int. J. Biol. Macromol. 209, 618–630. https://doi.org/10.1016/j.ijbiomac.2022.04.031 (2022).

    Google Scholar 

  32. Fernando, L. D. et al. Structural polymorphism of Chitin and Chitosan in fungal cell walls from Solid-State NMR and principal component analysis. Front. Mol. Biosci. 8, 814–814. https://doi.org/10.3389/fmolb.2021.727053 (2021).

    Google Scholar 

  33. Sarkar, D. et al. Diffusion in intact secondary cell wall models of plants at different equilibrium moisture content. Cell. Surf. 9, 100105. https://doi.org/10.1016/j.tcsw.2023.100105 (2023).

    Google Scholar 

  34. Gualdani, R., Cavalluzzi, M. M., Lentini, G. & Habtemariam, S. The chemistry and Pharmacology of citrus limonoids. Molecules 21, 1530.https://doi.org/10.3390/molecules21111530 (2016).

  35. Munir, H. et al. Unveiling the Chemistry of Citrus Peel: Insights into Nutraceutical Potential and Therapeutic Applications. Foods 13, 1681. https://doi.org/10.3390/foods13111681. (2024).

  36. Rodrigues, R. C. L. B. et al. Comprehensive approach of methods for microstructural analysis and analytical tools in lignocellulosic biomass assessment – A review. Bioresour. Technol. 348, 126627. https://doi.org/10.1016/j.biortech.2021.126627 (2022).

    Google Scholar 

  37. Shen, D. K. & Gu, S. The mechanism for thermal decomposition of cellulose and its main products. Bioresour. Technol. 100, 6496–6504. https://doi.org/10.1016/j.biortech.2009.06.095 (2009).

    Google Scholar 

  38. Migneault, S., Ahmed, K., Perré, P. & and Effect of fiber Origin, Proportion, and chemical composition on the mechanical and physical properties of Wood-Plastic composites. J. Wood Chem. Technol. 34, 241–261. https://doi.org/10.1080/02773813.2013.869604 (2014).

    Google Scholar 

  39. Yang, H., Yan, R., Chen, H., Lee, D. H. & Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013 (2007).

    Google Scholar 

  40. Chandrasekar, C. M. et al. Valorization of citrus Peel industrial wastes for facile extraction of extractives, pectin, and cellulose nanocrystals through ultrasonication: an in-depth investigation. Carbohydr. Polym. 344, 122539. https://doi.org/10.1016/j.carbpol.2024.122539 (2024).

    Google Scholar 

  41. Yue, K. et al. Experimental analysis of thermally-treated Chinese Poplar wood with focus on structural application. Ind. Crops Prod. 197, 116612. https://doi.org/10.1016/j.indcrop.2023.116612 (2023).

    Google Scholar 

  42. Chien, Y. C. et al. Effects of heat treatment on the chemical compositions and thermal decomposition kinetics of Japanese Cedar and Beech wood. Polym. Degrad. Stab. 158, 220–227. https://doi.org/10.1016/j.polymdegradstab.2018.11.003 (2018).

    Google Scholar 

  43. Salem, K. S. et al. Comparison and assessment of methods for cellulose crystallinity determination. Chem. Soc. Rev. 52, 6417–6446. https://doi.org/10.1039/D2CS00569G (2023).

    Google Scholar 

  44. Sun, R. & Tomkinson, J. Comparative study of lignins isolated by alkali and ultrasound-assisted alkali extractions from wheat straw. Ultrason. Sonochem. 9, 85–93. https://doi.org/10.1016/S1350-4177(01)00106-7 (2002).

    Google Scholar 

  45. Makarem, M. et al. Impact of drying on Meso- and nanoscale structures of citrus fiber: A study by SFG. DLS Industrial Eng. Chem. Res. 59, 2718–2724. https://doi.org/10.1021/acs.iecr.9b06194 (2020). ATR-IR, XRD.

    Google Scholar 

  46. Underhill, S. J. R. et al. ‘EUREKA’ LEMONS CAUSED BY STATIC COMPRESSION AND IMPACT LOADING J. Texture Stud. 29, 437–452, doi:https://doi.org/10.1111/j.1745-4603.1998.tb00815.x (1998).

    Google Scholar 

  47. Gong, G., Mathew, A. P. & Oksman, K. Strong aqueous gels of cellulose nanofibers and nanowhiskers isolated from softwood flour. Tappi J. 10, 42565 (2011).

    Google Scholar 

  48. Yaneva, Z., Ivanova, D., Nikolova, N. & Tzanova, M. The 21st century revival of Chitosan in service to bio-organic chemistry. Biotechnol. Biotechnol. Equip. 34, 221–237. https://doi.org/10.1080/13102818.2020.1731333 (2020).

    Google Scholar 

  49. Wijayarathna, E. R. K. B. et al. Tunable fungal monofilaments from food waste for textile applications. Global Challenges. 8, 2300098. https://doi.org/10.1002/gch2.202300098 (2024).

    Google Scholar 

  50. Hooshmand, S., Aitomäki, Y., Norberg, N., Mathew, A. P. & Oksman, K. Dry-Spun Single-Filament fibers comprising solely cellulose nanofibers from bioresidue. ACS Appl. Mater. Interfaces. 7, 13022–13028. https://doi.org/10.1021/acsami.5b03091 (2015).

    Google Scholar 

  51. Hooshmand, S., Aitomäki, Y., Berglund, L., Mathew, A. P. & Oksman, K. Enhanced alignment and mechanical properties through the use of hydroxyethyl cellulose in solvent-free native cellulose spun filaments. Compos. Sci. Technol. 150, 79–86. https://doi.org/10.1016/j.compscitech.2017.07.011 (2017).

    Google Scholar 

  52. Shen, Y. et al. High velocity dry spinning of nanofibrillated cellulose (CNF) filaments on an adhesion controlled surface with low friction. Cellulose 23, 3393–3398. https://doi.org/10.1007/s10570-016-1044-5 (2016).

    Google Scholar 

  53. Kalia, S. et al. Cellulose-Based Bio- and Nanocomposites: A Review. International Journal of Polymer Science 837875, (2011). https://doi.org/10.1155/2011/837875 (2011).

  54. Ambaye, T. G., Vaccari, M., Prasad, S., van Hullebusch, E. D. & Rtimi, S. Preparation and applications of Chitosan and cellulose composite materials. J. Environ. Manage. 301, 113850. https://doi.org/10.1016/j.jenvman.2021.113850 (2022).

    Google Scholar 

  55. Wahba, M. I. Enhancement of the mechanical properties of Chitosan. J. Biomater. Sci. Polym. Ed. 31, 350–375. https://doi.org/10.1080/09205063.2019.1692641 (2020).

    Google Scholar 

Download references