References
-
Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol. 39, 105–114, https://doi.org/10.1038/s41587-020-0603-3 (2021).
-
Chibani, C. M. et al. A catalogue of 1,167 genomes from the human gut archaeome. Nat Microbiol 7, 48–61 (2021).
-
Kumpitsch, C. et al. Reduced B12 uptake and increased gastrointestinal formate are associated with archaeome-mediated breath methane emission in humans. Microbiome 9, 193 (2021).
-
Attaluri, A., Jackson, M., Valestin, J. & Rao, S. S. Methanogenic Flora Is Associated With Altered Colonic Transit but Not Stool Characteristics in Constipation Without IBS. American Journal of Gastroenterology 105, 1407–1411 (2010).
-
Kuehnast, T. et al. Exploring the human archaeome: its relevance for health and disease, and its complex interplay with the human immune system. The FEBS Journal febs. 17123, https://doi.org/10.1111/febs.17123 (2024).
-
Basseri, R. J. et al. Intestinal Methane Production in Obese Individuals Is Associated with a Higher Body Mass Index.
-
Ghoshal, U., Shukla, R., Srivastava, D. & Ghoshal, U. C. Irritable Bowel Syndrome, Particularly the Constipation-Predominant Form, Involves an Increase in Methanobrevibacter smithii, Which Is Associated with Higher Methane Production. Gut and Liver 10, 932–938 (2016).
-
Li, T. et al. Multi-Cohort Analysis Reveals Altered Archaea in Colorectal Cancer Fecal Samples Across Populations. Gastroenterology 168(3), 525–538.e2 (2025).
-
Mathur, R. et al. Methane and Hydrogen Positivity on Breath Test Is Associated With Greater Body Mass Index and Body Fat. The Journal of Clinical Endocrinology & Metabolism 98, E698–E702 (2013).
-
Ghavami, S. B. et al. Alterations of the human gut Methanobrevibacter smithii as a biomarker for inflammatory bowel diseases. Microbial Pathogenesis 117, 285–289 (2018).
-
Mbakwa, C. A. et al. Gut colonization with methanobrevibacter smithii is associated with childhood weight development. Obesity 23, 2508–2516 (2015).
-
Aasmets, O., Krigul, K. L., Lüll, K., Metspalu, A. & Org, E. Gut metagenome associations with extensive digital health data in a volunteer-based Estonian microbiome cohort. Nat. Commun. 13, 869, https://doi.org/10.1038/s41467-022-28464-9 (2022).
-
Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676, https://doi.org/10.1093/bioinformatics/btv033 (2015).
-
Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359, https://doi.org/10.7717/peerj.7359 (2019).
-
Nissen, J. N. et al. Improved metagenome binning and assembly using deep variational autoencoders. Nat. Biotechnol. 39, 555–560, https://doi.org/10.1038/s41587-020-00777-4 (2021).
-
Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843, https://doi.org/10.1038/s41564-018-0171-1 (2018).
-
Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868, https://doi.org/10.1038/ismej.2017.126 (2017).
-
Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk v2: memory friendly classification with the Genome Taxonomy Database. http://biorxiv.org/lookup/doi/10.1101/2022.07.11.499641, https://doi.org/10.1101/2022.07.11.499641 (2022).
-
Parks, D.H., et al GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. https://doi.org/10.1093/nar/gkab776 (2021).
-
Nayfach, S., Shi, Z. J., Seshadri, R., Pollard, K. S. & Kyrpides, N. C. New insights from uncultivated genomes of the global human gut microbiome. Nature 568, 505–510, https://doi.org/10.1038/s41586-019-1058-x (2019).
-
Chklovski, A., Parks, D. H., Woodcroft, B. J. & Tyson, G. W. CheckM2: a rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. http://biorxiv.org/lookup/doi/10.1101/2022.07.11.499243, https://doi.org/10.1101/2022.07.11.499243 (2022).
-
Elkins, J. G. et al. A korarchaeal genome reveals insights into the evolution of the Archaea. Proc. Natl. Acad. Sci. USA. 105, 8102–8107 (2008).
-
Orakov, A. N. et al. GUNC: detection of chimerism and contamination in prokaryotic genomes. Genome Biology 22, 178–178 (2021).
-
Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation. PLoS ONE 11, e0163962 (2016).
-
Lü, Z. & Lu, Y. Methanocella conradii sp. nov., a Thermophilic, Obligate Hydrogenotrophic Methanogen, Isolated from Chinese Rice Field Soil. PLoS ONE 7, e35279 (2012).
-
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).
-
McKinney, W. Data Structures for Statistical Computing Python. 56–61, https://doi.org/10.25080/Majora-92bf1922-00a (Austin, Texas, 2010).
-
Hunter, J. D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 9, 90–95 (2007).
-
Waskom, M. seaborn: statistical data visualization. JOSS 6, 3021 (2021).
-
ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB81541 (2024).
-
Pantiukh, P. & Org, E. EstMB MAGdb Archaea-273. Figshare https://doi.org/10.6084/m9.figshare.30920087 (2025).
-
Pantiukh, P. & Org, E. Archaea ESTrep-21. Figshare https://doi.org/10.6084/m9.figshare.30920126 (2025).
-
Pantiukh, P. & Org, E. Archaea. Prokka annotation. Figshare https://doi.org/10.6084/m9.figshare.29329166 (2025).
