References
-
Li, Q. et al. Spatiotemporal trends in the burden of colorectal cancer incidence and risk factors at country level from 1990 to 2019. J. Gastroenterol. Hepatol. 39, 2616–2624 (2024).
-
Sung, H. et al. Colorectal cancer incidence trends in younger versus older adults: an analysis of population-based cancer registry data. Lancet Oncol. 26, 51–63 (2025).
-
Roshandel, G., Ghasemi-Kebria, F. & Malekzadeh, R. Colorectal cancer: Epidemiology, risk Factors, and prevention. Cancers (Basel). 16, 1530 (2024).
-
Dezfuli, A. A. Z., Abu-Elghait, M. & Salem, S. S. Recent insights into nanotechnology in colorectal cancer. Appl. Biochem. Biotechnol. 196, 4457–4471 (2024).
-
Hossain, M. S. et al. Colorectal cancer: A review of Carcinogenesis, global Epidemiology, current Challenges, risk Factors, preventive and treatment strategies. Cancers (Basel). 14, 1732 (2022).
-
Duan, X. et al. Hyaluronic acid-tailored prodrug nanoplatforms for efficiently overcoming colorectal cancer chemoresistance and recurrence by synergistic Inhibition of cancer cell stemness. J. Nanobiotechnol. 23, 507 (2025).
-
Akin Telli, T. et al. Regorafenib in combination with immune checkpoint inhibitors for mismatch repair proficient (pMMR)/microsatellite stable (MSS) colorectal cancer. Cancer Treat. Rev. 110, 102460 (2022).
-
Bai, H. et al. Cyclodextrin-based host-guest complexes loaded with regorafenib for colorectal cancer treatment. Nat. Commun. 12, 759 (2021).
-
Xia, D., Hu, C. & Hou, Y. Regorafenib loaded self-assembled lipid-based nanocarrier for colorectal cancer treatment via lymphatic absorption. Eur. J. Pharm. Biopharm. 185, 165–176 (2023).
-
Lang, T. et al. Combining gut microbiota modulation and chemotherapy by capecitabine-loaded prebiotic nanoparticle improves colorectal cancer therapy. Nat. Commun. 14, 4746 (2023).
-
Pouya, F. D., Salehi, R., Rasmi, Y., Kheradmand, F. & Fathi-Azarbayjani, A. Combination chemotherapy against colorectal cancer cells: Co-delivery of capecitabine and Pioglitazone hydrochloride by polycaprolactone-polyethylene glycol carriers. Life Sci. 332, 122083 (2023).
-
Din, F. et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomed. 12, 7291–7309 (2017).
-
Ding, L. et al. Polymer-Based drug delivery systems for cancer therapeutics. Polym. (Basel). 16, 843 (2024).
-
Umar, H. et al. Design, Development, and Tumor-Targeted drug delivery applications. Polym. (Basel). 14, 3118 (2022).
-
Pramanik, A. et al. Affimer tagged cubosomes: targeting of carcinoembryonic antigen expressing colorectal cancer cells using In vitro and In vivo models. ACS Appl. Mater. Interfaces. 14, 11078–11091 (2022).
-
Zhong, L. et al. Transformative hyaluronic acid-based active targeting supramolecular nanoplatform improves long circulation and enhances cellular uptake in cancer therapy. Acta Pharm. Sin B. 9, 397–409 (2019).
-
Xiao, B. et al. Hyaluronic acid-functionalized polymeric nanoparticles for colon cancer-targeted combination chemotherapy. Nanoscale 7, 17745–17755 (2015).
-
Luo, Q. et al. A novel Glyceryl monoolein-bearing cubosomes for gambogenic acid: Preparation, cytotoxicity and intracellular uptake. Int. J. Pharm. 493, 30–39 (2015).
-
Toriyabe, N., Hayashi, Y., Hyodo, M. & Harashima, H. Synthesis and evaluation of stearylated hyaluronic acid for the active delivery of liposomes to liver endothelial cells. Biol. Pharm. Bull. 34, 1084–1089 (2011).
-
Al-mahallawi, A. M., Abdelbary, A. A. & El-Zahaby, S. A. Norfloxacin loaded nano-cubosomes for enhanced management of otitis externa: in vitro and in vivo evaluation. Int. J. Pharm. 600, 120490 (2021).
-
Zaki, R. M. et al. Box Behnken optimization of cubosomes for enhancing the anticancer activity of metformin: Design, characterization, and in-vitro cell proliferation assay on MDA-MB-231 breast and LOVO colon cancer cell lines. Int. J. Pharm. X. 6, 100208 (2023).
-
Flak, D. K. et al. AT101-Loaded cubosomes as an alternative for improved glioblastoma therapy. Int. J. Nanomed. 15, 7415–7431. (2020).
-
Prajapati, P., Patel, R., Patel, D. & Shah, S. Design of experiments (DoE) – Based enhanced quality by design approach to hydrolytic degradation kinetic study of capecitabine by Eco-friendly stability indicating UV-Visible spectrophotometry. Am. J. PharmTech Res. 10, 115–133 (2020).
-
Angelov, B. et al. Identification of large channels in cationic pegylated cubosome nanoparticles by synchrotron radiation SAXS and Cryo-TEM imaging. Soft Matter. 11, 3686–3692 (2015).
-
Malik, M. et al. TPGS-PLA nanomicelles for targeting lung cancer; synthesis, characterization, and in vitro antitumor efficacy. J. Drug Deliv Sci. Technol. 91, 105238 (2024).
-
Eldeeb, A. E., Salah, S. & Ghorab, M. Formulation and evaluation of cubosomes drug delivery system for treatment of glaucoma: Ex-vivo permeation and in-vivo pharmacodynamic study. J. Drug Deliv Sci. Technol. 52, 236–247 (2019).
-
Choi, M. J., Woo, M. R., Choi, H. G. & Jin, S. G. Effects of polymers on the drug solubility and dissolution enhancement of poorly Water-Soluble Rivaroxaban. Int. J. Mol. Sci. 23, 9491 (2022).
-
Meikle, T. G., Keizer, D. W., Separovic, F. & Yao, S. A solution NMR view of lipidic cubic phases: Structure, dynamics, and beyond. BBA Adv. 2, 100062 (2022).
-
Lin, B. et al. Acidic pH and High-H 2 O 2 dual tumor Microenvironment-Responsive nanocatalytic graphene oxide for cancer selective therapy and recognition. ACS Appl. Mater. Interfaces. 11, 11157–11166 (2019).
-
Fawad, M. et al. Fabrication of oral sustained release capecitabine loaded nanostructured lipid carriers with improved bioavailability and prolonged anticancer effects. J. Mol. Liq. 421, 126852 (2025).
-
Sohail, S. et al. Novel biocompatible multifunctional porous magnetic nanoclusters for the targeted delivery of lenvatinib towards hepatocellular carcinoma. Mater. Adv. 6, 1769–1787 (2025).
-
Chithambara Shathviha, P., Ezhilarasan, D., Rajeshkumar, S. & Selvaraj, J. β-sitosterol mediated silver nanoparticles induce cytotoxicity in human colon cancer HT-29 cells. Avicenna J. Med. Biotechnol. https://doi.org/10.18502/ajmb.v13i1.4577 (2020).
-
Batool, S. et al. Macrophage targeting with the novel carbopol-based miltefosine-loaded transfersomal gel for the treatment of cutaneous leishmaniasis: in vitro and in vivo analyses. Drug Dev. Ind. Pharm. 47, 440–453 (2021).
-
Aydoğmuş, Z., Yılmaz, E. M., Öztürk Seyhan, N. & Okyar, A. A new validated high-performance liquid chromatography method for the determination of regorafenib in rat plasma: application for pharmacokinetic study. Sep Sci. Plus 7(6), 2400013 (2024).
-
Dudhipala, N. & Puchchakayala, G. Capecitabine lipid nanoparticles for anti-colon cancer activity in 1,2-dimethylhydrazine-induced colon cancer: preparation, cytotoxic, pharmacokinetic, and pathological evaluation. Drug Dev. Ind. Pharm. 44, 1572–1582 (2018).
-
Rehman, U. et al. pH responsive hydrogels for the delivery of capecitabine: Development, optimization and Pharmacokinetic studies. Gels 8, 775 (2022).
-
Decosterd, L. A. et al. Validation and clinical application of a multiplex high performance liquid chromatography – tandem mass spectrometry assay for the monitoring of plasma concentrations of 12 antibiotics in patients with severe bacterial infections. J. Chromatogr. B. 1157, 122160 (2020).
-
Cardoso, E. et al. Quantification of the next-generation oral anti-tumor drugs dabrafenib, trametinib, vemurafenib, cobimetinib, pazopanib, regorafenib and two metabolites in human plasma by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B. 1083, 124–136 (2018).
-
Din, F. U. et al. Injectable dual thermoreversible hydrogel for sustained intramuscular drug delivery. J. Controlled Release. 374, 590–605 (2024).
-
Din, F. et al. Irinotecan-encapsulated double-reverse thermosensitive nanocarrier system for rectal administration. Drug Deliv. 24, 502–510 (2017).
-
Sanap, S. N. et al. Simultaneous determination of fluconazole and Ofloxacin in rabbit tear fluid by LC-MS/MS: application to ocular Pharmacokinetic studies. J. Pharm. Biomed. Anal. 208, 114463 (2022).
-
Shafique, U. et al. Quality by design for Sumatriptan loaded nano-ethosomal mucoadhesive gel for the therapeutic management of nitroglycerin induced migraine. Int. J. Pharm. 646, 123480 (2023).
-
Din, F. et al. Irinotecan-loaded double-reversible thermogel with improved antitumor efficacy without initial burst effect and toxicity for intramuscular administration. Acta Biomater. 54, 239–248 (2017).
-
Barriga, H. M. G., Holme, M. N. & Stevens, M. M. Cubosomes: the next generation of smart lipid nanoparticles? Angew. Chem. Int. Ed. 58, 2958–2978 (2019).
-
Varghese, R., Salvi, S., Sood, P., Kulkarni, B. & Kumar, D. Cubosomes in cancer drug delivery: A review. Colloid Interface Sci. Commun. 46, 100561 (2022).
-
Wu, H. et al. A novel small Odorranalectin-bearing cubosomes: Preparation, brain delivery and pharmacodynamic study on amyloid-β25–35-treated rats following intranasal administration. Eur. J. Pharm. Biopharm. 80, 368–378 (2012).
-
Sharma, S. et al. Hyaluronic acid anchored Paclitaxel nanocrystals improves chemotherapeutic efficacy and inhibits lung metastasis in tumor-bearing rat model. RSC Adv. 6, 73083–73095 (2016).
-
Bokatyi, A. N., Dubashynskaya, N. V. & Skorik, Y. A. Chemical modification of hyaluronic acid as a strategy for the development of advanced drug delivery systems. Carbohydr. Polym. 337, 122145 (2024).
-
Sibgha batool. (2026) Unveiling the treatment potential of irinotecan- loaded biopolymeric nanocarrier system in skin cancer via targeting CD44 receptors. J Pharm. Anal.
-
Grabowski, M., Gmyrek, D., Żurawska, M. & Trusek, A. Hyaluronic acid: production Strategies, Gel-Forming Properties, and advances in drug delivery systems. Gels 11, 424 (2025).
-
Sivadasan, D., Sultan, M. H., Alqahtani, S. S. & Javed, S. Cubosomes in drug Delivery—A comprehensive review on its structural Components, Preparation techniques and therapeutic applications. Biomedicines 11, 1114 (2023).
-
Ananda Kumar Chettupalli, M. A. P. V. V. K. Y. B. R. A. & Design Formulation, In-Vitro and Ex-Vivo evaluation of Atazanavir loaded cubosomal gel. Biointerface Res. Appl. Chem. 11, 12037–12054 (2020).
-
Ali, M. A. et al. Enhancing the solubility and oral bioavailability of poorly Water-Soluble drugs using monoolein cubosomes. Chem. Pharm. Bull. (Tokyo). 65, 42–48 (2017).
-
Nasr, M., Younes, H. & Abdel-Rashid, R. S. Formulation and evaluation of cubosomes containing Colchicine for transdermal delivery. Drug Deliv Transl Res. 10, 1302–1313 (2020).
-
Ahmed, L. M., Hassanein, K. M. A., Mohamed, F. A. & Elfaham, T. H. Formulation and evaluation of Simvastatin cubosomal nanoparticles for assessing its wound healing effect. Sci. Rep. 13, 17941 (2023).
-
Nithya, R., Jerold, P. & Siram, K. Cubosomes of Dapsone enhanced permeation across the skin. J. Drug Deliv Sci. Technol. 48, 75–81 (2018).
-
Azhari, H., Strauss, M., Hook, S., Boyd, B. J. & Rizwan, S. B. Stabilising cubosomes with tween 80 as a step towards targeting lipid nanocarriers to the blood–brain barrier. Eur. J. Pharm. Biopharm. 104, 148–155 (2016).
-
Ghadiri, M., Vasheghani-Farahani, E., Atyabi, F., Kobarfard, F. & Hosseinkhani, H. In-Vitro assessment of magnetic Dextran-Spermine nanoparticles for capecitabine delivery to cancerous cells. Iran. J. Pharm. Res. 16, 1320–1334 (2017).
-
Knikman, J. E., Rosing, H., Guchelaar, H., Cats, A. & Beijnen, J. H. A review of the bioanalytical methods for the quantitative determination of capecitabine and its metabolites in biological matrices. Biomedical Chromatography 34(1), e4732 (2020).
-
D Kaur, S. et al. Cubosomes as potential nanocarrier for drug delivery: a comprehensive review. J. Pharm. Res. Int. https://doi.org/10.9734/jpri/2021/v33i31B31698 (2021).
-
Danaei, M. et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10, 57 (2018).
-
White, B., Banerjee, S., O’Brien, S., Turro, N. J. & Herman, I. P. Zeta-Potential measurements of Surfactant-Wrapped individual Single-Walled carbon nanotubes. J. Phys. Chem. C. 111, 13684–13690 (2007).
-
Brigger, I., Dubernet, C. & Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv Rev. 64, 24–36 (2012).
-
Baião, A., Sousa, F., Oliveira, A. V., Oliveira, C. & Sarmento, B. Effective intracellular delivery of bevacizumab via pegylated polymeric nanoparticles targeting the CD44v6 receptor in colon cancer cells. Biomater. Sci. 8, 3720–3729 (2020).
-
de Luis, I. et al. In vivo efficacy of bevacizumab-loaded albumin nanoparticles in the treatment of colorectal cancer. Drug Deliv Transl Res. 10, 635–645 (2020).
-
Patil, P. & Killedar, S. Chitosan and Glyceryl monooleate nanostructures containing Gallic acid isolated from Amla fruit: targeted delivery system. Heliyon 7, e06526 (2021).
-
Baira, S. M. et al. Characterization of degradation products of regorafenib by LC-QTOF-MS and NMR spectroscopy: investigation of rearrangement and odd-electron ion formation during collision-induced dissociations under ESI-MS/MS. New J. Chem. 41, 12091–12103 (2017).
-
Ameli, H. & Alizadeh, N. Targeted delivery of capecitabine to colon cancer cells using nano polymeric micelles based on beta cyclodextrin. RSC Adv. 12, 4681–4691 (2022).
-
Song, L. et al. Dually folate/CD44 receptor-targeted self-assembled hyaluronic acid nanoparticles for dual-drug delivery and combination cancer therapy. J. Mater. Chem. B. 5, 6835–6846 (2017).
-
Aouameur, D. et al. Stimuli-responsive gel-micelles with flexible modulation of drug release for maximized antitumor efficacy. Nano Res. 11, 4245–4264 (2018).
-
Yasmin, T. et al. Mimosa/quince seed mucilage–co-poly (methacrylate) hydrogels for controlled delivery of capecitabine: simulation studies, characterization and toxicological evaluation. Int. J. Biol. Macromol. 275, 133468 (2024).
-
Ahmed, I. et al. Development of tamarind gum/β-CD-co-poly (MAA) hydrogels for pH-driven controlled delivery of capecitabine. Polym. Bull. 81, 6173–6205 (2024).
-
Yue, M., Yang, R., Jiang, Y. & Yang, X. Precise construction of Regorafenib-loaded gold nanoparticles: investigation of antiproliferative activity and apoptosis induction in liver cancer cells. J Exp. Nanosci 18(1), 2254006 (2023).
-
Yuan, M. et al. Hyaluronan-modified transfersomes based hydrogel for enhanced transdermal delivery of indomethacin. Drug Deliv. 29, 1232–1242 (2022).
-
Sallam, N. G., Boraie, N. A., Sheta, E. & El-Habashy, S. E. Targeted delivery of genistein for pancreatic cancer treatment using hyaluronic-coated cubosomes bioactivated with frankincense oil. Int. J. Pharm. 649, 123637 (2024).
-
Wang, D. et al. Cubosome nanoparticles potentiate immune properties of immunostimulants. Int. J. Nanomed. 11, 3571–3583 (2016).
-
Liu, Y., Chen, X. G., Yang, P. P., Qiao, Z. Y. & Wang, H. Tumor microenvironmental pH and enzyme dual responsive Polymer-Liposomes for synergistic treatment of cancer Immuno-Chemotherapy. Biomacromolecules 20, 882–892 (2019).
-
Wang, H. et al. Reprogramming tumor microenvironment via dual targeting co-delivery of regorafenib and alpha-difluoromethylornithine in osteosarcoma. Cancer Nanotechnol. 14, 50 (2023).
-
Chen, C., Sun, W., Wang, X., Wang, Y. & Wang, P. pH-responsive nanoreservoirs based on hyaluronic acid end-capped mesoporous silica nanoparticles for targeted drug delivery. Int. J. Biol. Macromol. 111, 1106–1115 (2018).
-
Tripathi, A. D. et al. Folate-Mediated targeting and controlled release: PLGA-Encapsulated mesoporous silica nanoparticles delivering capecitabine to pancreatic tumor. ACS Appl. Bio Mater. 7, 7838–7851 (2024).
-
Hafner, F. T., Werner, D. & Kaiser, M. Determination of regorafenib (Bay 73-4506) and its major human metabolites Bay 75-7495 (M-2) and Bay 81-8752 (M-5) in human plasma by Stable-Isotope Dilution liquid Chromatography–Tandem mass spectrometry. Bioanalysis 6, 1923–1937 (2014).
-
Lee, S. Y., Kang, M. S., Jeong, W. Y., Han, D. W. & Kim, K. S. Hyaluronic Acid-Based theranostic nanomedicines for targeted cancer therapy. Cancers (Basel). 12, 940 (2020).
-
Xiao, T., Hu, W., Fan, Y., Shen, M. & Shi, X. Macrophage-mediated tumor homing of hyaluronic acid nanogels loaded with polypyrrole and anticancer drug for targeted combinational photothermo-chemotherapy. Theranostics 11, 7057–7071 (2021).
-
Wu, I. Y., Bala, S. & Škalko-Basnet, N. Cagno, M. P. Interpreting non-linear drug diffusion data: utilizing Korsmeyer-Peppas model to study drug release from liposomes. Eur. J. Pharm. Sci. 138, 105026 (2019). di.
-
Zhai, J. et al. In vitro and in vivo toxicity and biodistribution of Paclitaxel-Loaded cubosomes as a drug delivery nanocarrier: A case study using an A431 skin cancer xenograft model. ACS Appl. Bio Mater. 3, 4198–4207 (2020).
-
Batool, S. et al. Development and statistical optimization of camptothecin loaded hyaluronic acid and zein polymeric nanoparticles towards the treatment of melanoma. Int. J. Biol. Macromol. https://doi.org/10.1016/j.ijbiomac.2025.146330 (2025).
-
Saleem, A. et al. Development and evaluation of regorafenib loaded liquid suppository for rectal delivery: in vitro, in vivo analyses. J. Drug Deliv Sci. Technol. 91, 105239 (2024).
-
Alfagih, I. M. et al. Cubosomes dispersions as enhanced indomethacin oral delivery systems: in vitro and stability evaluation. J. Pharm. Res. Int. 33, 24–35 (2021).
-
Yasser, M., Teaima, M., El-Nabarawi, M. & El-Monem, R. A. Cubosomal based oral tablet for controlled drug delivery of telmisartan: formulation, in-vitro evaluation and in-vivo comparative pharmacokinetic study in rabbits.. Drug Dev. Ind. Pharm. 45, 981–994 (2019).
-
Malik, M. et al. Palbociclib- and regorafenib-loaded nanomicelles for the treatment of non-small cell lung cancer: Pharmacokinetic and antitumor evaluations. J. Pharm. Investig. https://doi.org/10.1007/s40005-025-00753-7 (2025).
-
Yan, H. et al. Regorafenib inhibits EphA2 phosphorylation and leads to liver damage via the ERK/MDM2/p53 axis. Nat. Commun. 14, 2756 (2023).
-
Ibrahim, H. A. et al. Baicalein prevents capecitabine-induced heart damage in female Wistar rats and enhances its anticancer potential in MCF-7 breast cancer cells. Life Sci. 319, 121523 (2023).
-
Zhou, Z. Co-drug delivery of regorafenib and cisplatin with amphiphilic copolymer nanoparticles: enhanced in vivo antitumor cancer therapy in nursing care. Drug Deliv. 27, 1319–1328 (2020).
