Hybrid genome sequence of Cryptococcus neoformans of Indian origin and comparative genome analysis

hybrid-genome-sequence-of-cryptococcus-neoformans-of-indian-origin-and-comparative-genome-analysis
Hybrid genome sequence of Cryptococcus neoformans of Indian origin and comparative genome analysis

References

  1. WHO. Indian Priority Pathogen List. 1–24 (2021).

  2. Diniz-lima, I. et al. Cryptococcus : History, epidemiology and immune evasion. Appl. Sci. 12(14), 7086 (2022).

    Google Scholar 

  3. Rajasingham, R. et al. Articles The global burden of HIV-associated cryptococcal infection in adults in 2020: A modelling analysis. Lancet Infect. Dis. 3099, 1–8 (2022).

    Google Scholar 

  4. Coelho, C., Bocca, A. L. & Casadevall, A. The tools for virulence of cryptococcus neoformans. Adv. Appl. Microbiol. 87, 1–41 (2014).

    Google Scholar 

  5. Firacative, C., Meyer, W. & Castañeda, E. Cryptococcus neoformans and Cryptococcus gattii species complexes in Latin America: A map of molecular types, genotypic diversity, and antifungal susceptibility as reported by the Latin American cryptococcal study group. J. Fungi 7, 282 (2021).

    Google Scholar 

  6. Maziarz, E. K. & Perfect, J. R. Cryptococcosis. Infect. Dis. Clin. North Am. 30, 179–206 (2016).

    Google Scholar 

  7. Rathore, S. S., Sathiyamoorthy, J., Lalitha, C. & Ramakrishnan, J. A holistic review on Cryptococcus neoformans. Microb. Pathog. 166, 105521 (2022).

    Google Scholar 

  8. Vu, K. et al. Invasion of the central nervous system by Cryptococcus neoformans requires a secreted fungal metalloprotease. MBio 5, 1–13 (2014).

    Google Scholar 

  9. Kwon-chung, K. J. et al. Cryptococcus neoformans and Cryptococcus gattii, the etiologic agents of Cryptococcosis. Cold Spring Harb. Prespectives Med. 4, a019760 (2014).

    Google Scholar 

  10. Xess, I. et al. Multilocus Sequence typing of clinical isolates of Cryptococcus from India. Mycopathologia 186, 199–211 (2021).

    Google Scholar 

  11. Chayakulkeeree, M. & Perfect, J. R. Cryptococcosis. Infect. Dis. Clin. North Am. 20, 507–544 (2006).

    Google Scholar 

  12. Sabiiti, W. & May, R. C. Mechanisms of infection by the human fungal pathogen. Future Microbiol. 7, 1297–1313 (2012).

    Google Scholar 

  13. Patiño, L. H. et al. A landscape of the genomic structure of Cryptococcus neoformans in Colombian isolates. J. Fungi 9, 135 (2023).

    Google Scholar 

  14. Arastehfar, A. et al. Drug-resistant fungi: An emerging challenge threatening our limited antifungal armamentarium. Antibiotics 9, 1–29 (2020).

    Google Scholar 

  15. Brown, S. M., Campbell, L. T. & Lodge, J. K. Cryptococcus neoformans, a fungus under stress. Curr. Opin. Microbiol. 10, 320–325 (2007).

    Google Scholar 

  16. Ding, H. et al. ATG genes influence the virulence of Cryptococcus neoformans through contributions beyond core autophagy functions. Infect. Immun. 86, 1–24 (2018).

    Google Scholar 

  17. Zhao, X. et al. Conserved autophagy pathway contributes to stress tolerance and virulence and differentially controls autophagic flux upon nutrient starvation in Cryptococcus neoformans. Front. Microbiol. 10, 1–14 (2019).

    Google Scholar 

  18. Jiang, S. T. et al. Autophagy regulates fungal virulence and sexual reproduction in Cryptococcus neoformans. Front. Cell Dev. Biol. 8, 374 (2020).

    Google Scholar 

  19. Park, Y. D. et al. Identification of multiple cryptococcal fungicidal drug targets by combined gene dosing and drug affinity responsive target stability screening. MBio 7, 1–12 (2016).

    Google Scholar 

  20. Cao, C., Wang, Y., Husain, S., Soteropoulos, P. & Xue, C. Echinocandin Resistance in Cryptococcus neoformans. 1–18 (2019).

  21. Gow, N. A. R. et al. The importance of antimicrobial resistance in medical mycology. Nat. Commun. https://doi.org/10.1038/s41467-022-32249-5 (2022).

    Google Scholar 

  22. Alastruey-Izquierdo, A. & Martín-Galiano, A. J. The challenges of the genome-based identification of antifungal resistance in the clinical routine. Front. Microbiol. 14, 1–8 (2023).

    Google Scholar 

  23. Wu, S. et al. Progress of polymer-based strategies in fungal disease management: Designed for different roles. Front. Cell. Infect. Microbiol. 13, 1–26 (2023).

    Google Scholar 

  24. Tan, K. L. S. & Mohamad, S. B. Fungal pathogen in digital age: Review on current state and trend of comparative genomics studies of pathogenic fungi. Adv. Microbiol. 63, 23–31 (2024).

    Google Scholar 

  25. Rathore, S. S., Raman, T. & Ramakrishnan, J. Magnesium Ion acts as a signal for capsule induction in Cryptococcus neoformans. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.00325 (2017).

    Google Scholar 

  26. Rathore, S. S., Isravel, M., Vellaisamy, S. & Raj, D. Exploration of antifungal and immunomodulatory potentials of a furanone derivative to rescue disseminated Cryptococosis in mice. Sci. Rep. https://doi.org/10.1038/s41598-017-15500-8 (2017).

    Google Scholar 

  27. Cuomo, C., & Litvintseva, P. (2014). Population genomic analysis of the human pathogenic fungus Cryptococcus neoformans. Mycoses, 57(Suppl. 1), 17.

  28. Hagen, F. et al. Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet. Biol. 78, 16–48 (2015).

    Google Scholar 

  29. Caza, M. & Kronstad, J. W. The cAMP/protein kinase a pathway regulates virulence and adaptation to host conditions in Cryptococcus neoformans. Front. Cell. Infect. Microbiol. 9, 1–15 (2019).

    Google Scholar 

  30. Bürgel, P. H. et al. Cryptococcus neoformans secretes small molecules that inhibit IL-1 β inflammasome-dependent secretion. Mediat. Inflamm. 2020, 3412763 (2020).

    Google Scholar 

  31. Bolano, A. et al. Rapid methods to extract DNA and RNA from Cryptococcus neoformans. FEMS Yeast Res. 1, 221–224 (2001).

    Google Scholar 

  32. Watanabe, M. et al. Rapid and effective DNA extraction method with bead grinding for a large amount of fungal DNA. J. Food Prot. 73, 1077–1084 (2010).

    Google Scholar 

  33. QIAseq ® FX DNA Library Kit Handbook. (2023).

  34. Zimin, A. V. et al. The MaSuRCA genome assembler. Bioinformatics 29, 2669–2677 (2013).

    Google Scholar 

  35. Xu, G., Xu, T., Zhu, R., Wang, H. & Li, J. LR Gapcloser : a tiling path-based gap closer that uses long reads to complete genome assembly. 1–14 (2018). https://doi.org/10.1093/gigascience/giy157

  36. Manni, M., Berkeley, M. R., Seppey, M. & Zdobnov, E. M. BUSCO : Assessing Genomic Data Quality and Beyond. 1–41 (2022). https://doi.org/10.1002/cpz1.323

  37. Hoff, K. J., Lomsadze, A., Stanke, M. & Borodovsky, M. BRAKER2 : automatic eukaryotic genome annotation with GeneMark-EP + and AUGUSTUS supported by a ´ s ˇ Br una Tom a. 3, 1–11 (2021).

  38. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. 12, (2015).

  39. Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A. C. & Kanehisa, M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 35, 182–185 (2007).

    Google Scholar 

  40. Stanke, M. & Morgenstern, B. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 33, 465–467 (2005).

    Google Scholar 

  41. Mau, B. & Perna, N. T. Progressive Mauve : Multiple alignment of genomes with gene flux and rearrangement. (2014). Preprint at https://arxiv.org/abs/0910.5780

  42. Ha, S. Y. S., Lim, J., Kwon, S. & Chun, J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110, 1281–1286 (2017).

    Google Scholar 

  43. Community, T. G. The Galaxy platform for accessible , reproducible , and collabor ativ e data analyses : 2024 update. Nucleic acids research 52, no. W1 (2024): W83-W94(2024).

  44. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    Google Scholar 

  45. Letunic, I. & Bork, P. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. https://doi.org/10.1093/nar/gkae268 (2024).

    Google Scholar 

  46. Zhang, S. et al. The Hsp70 member, Ssa1, acts as a DNA-binding transcriptional co-activator of laccase in Cryptococcus neoformans. Mol. Microbiol. 62, 1090–1101 (2006).

    Google Scholar 

  47. Lu, T., Yao, B. & Zhang, C. Original article DFVF : Database of fungal virulence factors. Database 2012, 1–4 (2012).

    Google Scholar 

  48. Almeida FWolf JM, Casadevall A2015.Virulence-Associated Enzymes of Cryptococcus neoformans. Eukaryot Cell14:.https://doi.org/10.1128/ec.00103-15

  49. Azevedo, R., Rizzo, J. & Rodrigues, M. Virulence Factors as targets for anticryptococcal therapy. J. Fungi 2, 29 (2016).

    Google Scholar 

  50. Malachowski, A. N. et al. Systemic approach to virulence gene network analysis for gaining new insight into cryptococcal virulence. Front. Microbiol. 7, 1–14 (2016).

    Google Scholar 

  51. Brandão, F. et al. HDAC genes play distinct and redundant roles in Cryptococcus neoformans virulence. Sci. Rep. 8, 1–17 (2018).

    Google Scholar 

  52. Verma, S., Shakya, V. P. S. & Idnurm, A. Exploring and exploiting the connection between mitochondria and the virulence of human pathogenic fungi. Virulence 9, 426–446 (2018).

    Google Scholar 

  53. Zaragoza, O. Basic principles of the virulence of Cryptococcus. Virulence 10, 490–501 (2019).

    Google Scholar 

  54. Sun, J. et al. OrthoVenn3: An integrated platform for exploring and visualizing orthologous data across genomes. Nucleic Acids Res. 51, W397–W403 (2023).

    Google Scholar 

Download references