References
-
Zeng, Y. et al. Salmonella enteritidis acquires phage resistance through a point mutation in RfbD but loses some of its environmental adaptability. Vet. Res. 55 (1), 85 (2024).
-
Dallal, M. et al. Phage therapy as an approach to control Salmonella enterica serotype enteritidis infection in mice. Rev. Soc. Bras. Med. Trop. 52, e20190290 (2019).
-
Hosbul, T. et al. [Investigation of Azithromycin minimum inhibitory concentration values and carbapenem resistance in Salmonella and Shigella clinical Isolates]. Mikrobiyol Bul. 55 (4), 480–491 (2021).
-
Rather, M. A., Gupta, K. & Mandal, M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Braz J. Microbiol. 52 (4), 1701–1718 (2021).
-
Tisza, M. J. et al. Longitudinal phage-bacteria dynamics in the early life gut Microbiome. Nat. Microbiol. 10 (2), 420–430 (2025).
-
Hatfull, G. F., Dedrick, R. M. & Schooley, R. T. Phage therapy for Antibiotic-Resistant bacterial infections. Annu. Rev. Med. 73, 197–211 (2022).
-
Selim, H., Gomaa, F., Alshahrani, M. Y., Morgan, R. N. & Aboshanab, K. M. Phage therapeutic delivery methods and clinical trials for combating clinically relevant pathogens. Ther. Deliv. 16 (3), 247–269 (2025).
-
Liu, K. et al. Bacteriophage therapy for drug-resistant Staphylococcus aureus infections. Front. Cell. Infect. Microbiol. 14, 1336821 (2024).
-
Yang, P. et al. Identification of a novel phage depolymerase against ST11 K64 carbapenem-resistant Klebsiella pneumoniae and its therapeutic potential. J. Bacteriol. 207 (4), e38724 (2025).
-
Borzilov, A. I. et al. Bacteriophage and Phage-Encoded depolymerase exhibit antibacterial activity against K9-Type acinetobacter baumannii in mouse sepsis and burn skin infection models. Viruses 17 (1), 70 (2025).
-
Zhao, J. et al. Characterization of a Salmonella abortus equi phage 4FS1 and its depolymerase. Front. Vet. Sci. 11, 1496684 (2024).
-
CLSI Document M100-S27. Performance standards for antimicrobial susceptibility testing. 34th Edition. https://clsi.staging.fynydd.com/standards/) (2024).
-
Lin, N. T., Chiou, P. Y., Chang, K. C., Chen, L. K. & Lai, M. J. Isolation and characterization of phi AB2: a novel bacteriophage of acinetobacter baumannii. Res. Microbiol. 161 (4), 308–314 (2010).
-
Guo, Z. et al. Identification and characterization of Dpo42, a novel depolymerase derived from the Escherichia coli phage vB_EcoM_ECOO78. Front. Microbiol. 8, 1460 (2017).
-
Zhao, R. et al. A novel phage putative depolymerase, Depo16, has specific activity against K1 capsular-type Klebsiella pneumoniae. Appl. Environ. Microbiol. 90 (4), e119723 (2024).
-
Barrow, P., Lovell, M. & Berchieri, A. J. Use of lytic bacteriophage for control of experimental Escherichia coli septicemia and meningitis in chickens and calves. Clin. Diagn. Lab. Immunol. 5 (3), 294–298 (1998).
-
Russell, J. S. Molecular Cloning :a Laboratory Manual (Cold Spring Harbor Laboratory Press, 2001).
-
Letunic, I. & Bork, P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49 (W1), W293–W296 (2021).
-
Verma, V., Harjai, K. & Chhibber, S. Characterization of a T7-like lytic bacteriophage of Klebsiella pneumoniae B5055: a potential therapeutic agent. Curr. Microbiol. 59 (3), 274–281 (2009).
-
O’Toole, G. A. et al. Genetic approaches to study of biofilms. Methods Enzymol. 310, 91–109 (1999).
-
Luo, Y., Mahillon, J., Sun, L., You, Z. & Hu, X. Isolation, characterization and liposome-loaded encapsulation of a novel virulent Salmonella phage vB-SeS-01. Front. Microbiol. 16, 1494647 (2025).
-
Liu, L. et al. Biological characteristics of the bacteriophage LDT325 and its potential application against the plant pathogen Pseudomonas syringae. Front. Microbiol. 15, 1370332 (2024).
-
Hong, S. S. et al. Therapeutic effects of bacteriophages against Salmonella gallinarum infection in chickens. J. Microbiol. Biotechnol. 23 (10), 1478–1483 (2013).
-
Sun, X. et al. Isolation and characterization of virulent bacteriophages and controlling Salmonella enteritidis biofilms on chicken meat. Microb. Pathog. 205, 107619 (2025).
-
Wang, Y. et al. Bacteriophage-based control of Salmonella on table eggs and breeding eggs in poultry. Poult. Sci. 104 (4), 104969 (2025).
-
Rodea, M. G. et al. Genomic analysis of a novel phage vB_SenS_ST1UNAM with lytic activity against Salmonella enterica serotypes. Diagn. Microbiol. Infect. Dis. 109 (3), 116305 (2024).
-
Islam, M. S. et al. Characterization of Salmonella phage LPST153 that effectively targets most prevalent Salmonella serovars. Microorganisms 8 (7), 1089 (2020).
-
Chen, X. et al. Phage-Derived depolymerase as an antibiotic adjuvant against Multidrug-Resistant acinetobacter baumannii. Front. Microbiol. 13, 845500 (2022).
-
Wang, H. et al. Phage-derived polysaccharide depolymerase potentiates Ceftazidime efficacy against acinetobacter baumannii pneumonia via low-serum-dependent mechanisms. Int. J. Biol. Macromol. 282 (Pt 6), 137486 (2024).
-
Noreika, A., Stankeviciute, J., Rutkiene, R., Meskys, R. & Kaliniene, L. Exploring the enzymatic activity of depolymerase gp531 from Klebsiella pneumoniae Jumbo phage RaK2. Virus Res. 336, 199225 (2023).
-
Park, D. W. & Park, J. H. Characterization of a novel phage depolymerase specific to Escherichia coli O157:H7 and biofilm control on abiotic surfaces. J. Microbiol. 59 (11), 1002–1009 (2021).
-
Duarte, A. C. et al. Synergistic removal of Staphylococcus aureus biofilms by using a combination of phage kayvirus Rodi with the exopolysaccharide depolymerase Dpo7. Front. Microbiol. 15, 1438022 (2024).
-
Wang, R. et al. Identification and characterization of the capsule depolymerase Dpo27 from phage IME-Ap7 specific to acinetobacter Pittii. Front. Cell. Infect. Microbiol. 14, 1373052 (2024).
-
Kim, J., Wang, J. & Ahn, J. Combined antimicrobial effect of phage-derived endolysin and depolymerase against biofilm-forming Salmonella typhimurium. Biofouling 39 (7), 763–774 (2023).
-
Kim, S. H., Lee, H. & Park, M. K. Isolation, characterization, and application of a novel, lytic phage vB_SalA_KFSST3 with depolymerase for the control of Salmonella and its biofilm on cantaloupe under cold temperature. Food Res. Int. 172, 113062 (2023).
-
Guo, Z., Liu, M. & Zhang, D. Potential of phage depolymerase for the treatment of bacterial biofilms. Virulence 14 (1), 2273567 (2023).
-
Cui, X. et al. A novel phage carrying capsule depolymerase effectively relieves pneumonia caused by multidrug-resistant Klebsiella aerogenes. J. Biomed. Sci. 30 (1), 75 (2023).
-
Rice, C. J. et al. Novel Phage-Derived depolymerase with activity against proteus mirabilis biofilms. Microorganisms 9 (10), 2172 (2021).
