Identify and characterize a carbapenem-resistant Salmonella enteritidis phage depolymerase Dpo52

identify-and-characterize-a-carbapenem-resistant-salmonella-enteritidis-phage-depolymerase-dpo52
Identify and characterize a carbapenem-resistant Salmonella enteritidis phage depolymerase Dpo52

References

  1. Zeng, Y. et al. Salmonella enteritidis acquires phage resistance through a point mutation in RfbD but loses some of its environmental adaptability. Vet. Res. 55 (1), 85 (2024).

    Google Scholar 

  2. Dallal, M. et al. Phage therapy as an approach to control Salmonella enterica serotype enteritidis infection in mice. Rev. Soc. Bras. Med. Trop. 52, e20190290 (2019).

    Google Scholar 

  3. Hosbul, T. et al. [Investigation of Azithromycin minimum inhibitory concentration values and carbapenem resistance in Salmonella and Shigella clinical Isolates]. Mikrobiyol Bul. 55 (4), 480–491 (2021).

    Google Scholar 

  4. Rather, M. A., Gupta, K. & Mandal, M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Braz J. Microbiol. 52 (4), 1701–1718 (2021).

    Google Scholar 

  5. Tisza, M. J. et al. Longitudinal phage-bacteria dynamics in the early life gut Microbiome. Nat. Microbiol. 10 (2), 420–430 (2025).

    Google Scholar 

  6. Hatfull, G. F., Dedrick, R. M. & Schooley, R. T. Phage therapy for Antibiotic-Resistant bacterial infections. Annu. Rev. Med. 73, 197–211 (2022).

    Google Scholar 

  7. Selim, H., Gomaa, F., Alshahrani, M. Y., Morgan, R. N. & Aboshanab, K. M. Phage therapeutic delivery methods and clinical trials for combating clinically relevant pathogens. Ther. Deliv. 16 (3), 247–269 (2025).

    Google Scholar 

  8. Liu, K. et al. Bacteriophage therapy for drug-resistant Staphylococcus aureus infections. Front. Cell. Infect. Microbiol. 14, 1336821 (2024).

    Google Scholar 

  9. Yang, P. et al. Identification of a novel phage depolymerase against ST11 K64 carbapenem-resistant Klebsiella pneumoniae and its therapeutic potential. J. Bacteriol. 207 (4), e38724 (2025).

    Google Scholar 

  10. Borzilov, A. I. et al. Bacteriophage and Phage-Encoded depolymerase exhibit antibacterial activity against K9-Type acinetobacter baumannii in mouse sepsis and burn skin infection models. Viruses 17 (1), 70 (2025).

    Google Scholar 

  11. Zhao, J. et al. Characterization of a Salmonella abortus equi phage 4FS1 and its depolymerase. Front. Vet. Sci. 11, 1496684 (2024).

    Google Scholar 

  12. CLSI Document M100-S27. Performance standards for antimicrobial susceptibility testing. 34th Edition. https://clsi.staging.fynydd.com/standards/) (2024).

  13. Lin, N. T., Chiou, P. Y., Chang, K. C., Chen, L. K. & Lai, M. J. Isolation and characterization of phi AB2: a novel bacteriophage of acinetobacter baumannii. Res. Microbiol. 161 (4), 308–314 (2010).

    Google Scholar 

  14. Guo, Z. et al. Identification and characterization of Dpo42, a novel depolymerase derived from the Escherichia coli phage vB_EcoM_ECOO78. Front. Microbiol. 8, 1460 (2017).

    Google Scholar 

  15. Zhao, R. et al. A novel phage putative depolymerase, Depo16, has specific activity against K1 capsular-type Klebsiella pneumoniae. Appl. Environ. Microbiol. 90 (4), e119723 (2024).

    Google Scholar 

  16. Barrow, P., Lovell, M. & Berchieri, A. J. Use of lytic bacteriophage for control of experimental Escherichia coli septicemia and meningitis in chickens and calves. Clin. Diagn. Lab. Immunol. 5 (3), 294–298 (1998).

    Google Scholar 

  17. Russell, J. S. Molecular Cloning :a Laboratory Manual (Cold Spring Harbor Laboratory Press, 2001).

  18. Letunic, I. & Bork, P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49 (W1), W293–W296 (2021).

    Google Scholar 

  19. Verma, V., Harjai, K. & Chhibber, S. Characterization of a T7-like lytic bacteriophage of Klebsiella pneumoniae B5055: a potential therapeutic agent. Curr. Microbiol. 59 (3), 274–281 (2009).

    Google Scholar 

  20. O’Toole, G. A. et al. Genetic approaches to study of biofilms. Methods Enzymol. 310, 91–109 (1999).

    Google Scholar 

  21. Luo, Y., Mahillon, J., Sun, L., You, Z. & Hu, X. Isolation, characterization and liposome-loaded encapsulation of a novel virulent Salmonella phage vB-SeS-01. Front. Microbiol. 16, 1494647 (2025).

    Google Scholar 

  22. Liu, L. et al. Biological characteristics of the bacteriophage LDT325 and its potential application against the plant pathogen Pseudomonas syringae. Front. Microbiol. 15, 1370332 (2024).

    Google Scholar 

  23. Hong, S. S. et al. Therapeutic effects of bacteriophages against Salmonella gallinarum infection in chickens. J. Microbiol. Biotechnol. 23 (10), 1478–1483 (2013).

    Google Scholar 

  24. Sun, X. et al. Isolation and characterization of virulent bacteriophages and controlling Salmonella enteritidis biofilms on chicken meat. Microb. Pathog. 205, 107619 (2025).

    Google Scholar 

  25. Wang, Y. et al. Bacteriophage-based control of Salmonella on table eggs and breeding eggs in poultry. Poult. Sci. 104 (4), 104969 (2025).

    Google Scholar 

  26. Rodea, M. G. et al. Genomic analysis of a novel phage vB_SenS_ST1UNAM with lytic activity against Salmonella enterica serotypes. Diagn. Microbiol. Infect. Dis. 109 (3), 116305 (2024).

    Google Scholar 

  27. Islam, M. S. et al. Characterization of Salmonella phage LPST153 that effectively targets most prevalent Salmonella serovars. Microorganisms 8 (7), 1089 (2020).

    Google Scholar 

  28. Chen, X. et al. Phage-Derived depolymerase as an antibiotic adjuvant against Multidrug-Resistant acinetobacter baumannii. Front. Microbiol. 13, 845500 (2022).

    Google Scholar 

  29. Wang, H. et al. Phage-derived polysaccharide depolymerase potentiates Ceftazidime efficacy against acinetobacter baumannii pneumonia via low-serum-dependent mechanisms. Int. J. Biol. Macromol. 282 (Pt 6), 137486 (2024).

    Google Scholar 

  30. Noreika, A., Stankeviciute, J., Rutkiene, R., Meskys, R. & Kaliniene, L. Exploring the enzymatic activity of depolymerase gp531 from Klebsiella pneumoniae Jumbo phage RaK2. Virus Res. 336, 199225 (2023).

    Google Scholar 

  31. Park, D. W. & Park, J. H. Characterization of a novel phage depolymerase specific to Escherichia coli O157:H7 and biofilm control on abiotic surfaces. J. Microbiol. 59 (11), 1002–1009 (2021).

    Google Scholar 

  32. Duarte, A. C. et al. Synergistic removal of Staphylococcus aureus biofilms by using a combination of phage kayvirus Rodi with the exopolysaccharide depolymerase Dpo7. Front. Microbiol. 15, 1438022 (2024).

    Google Scholar 

  33. Wang, R. et al. Identification and characterization of the capsule depolymerase Dpo27 from phage IME-Ap7 specific to acinetobacter Pittii. Front. Cell. Infect. Microbiol. 14, 1373052 (2024).

    Google Scholar 

  34. Kim, J., Wang, J. & Ahn, J. Combined antimicrobial effect of phage-derived endolysin and depolymerase against biofilm-forming Salmonella typhimurium. Biofouling 39 (7), 763–774 (2023).

    Google Scholar 

  35. Kim, S. H., Lee, H. & Park, M. K. Isolation, characterization, and application of a novel, lytic phage vB_SalA_KFSST3 with depolymerase for the control of Salmonella and its biofilm on cantaloupe under cold temperature. Food Res. Int. 172, 113062 (2023).

    Google Scholar 

  36. Guo, Z., Liu, M. & Zhang, D. Potential of phage depolymerase for the treatment of bacterial biofilms. Virulence 14 (1), 2273567 (2023).

    Google Scholar 

  37. Cui, X. et al. A novel phage carrying capsule depolymerase effectively relieves pneumonia caused by multidrug-resistant Klebsiella aerogenes. J. Biomed. Sci. 30 (1), 75 (2023).

    Google Scholar 

  38. Rice, C. J. et al. Novel Phage-Derived depolymerase with activity against proteus mirabilis biofilms. Microorganisms 9 (10), 2172 (2021).

    Google Scholar 

Download references