Immunoassays for the detection and differentiation of Paenibacillus larvae, the etiological agent of American foulbrood (AFB) in honey bees

immunoassays-for-the-detection-and-differentiation-of-paenibacillus-larvae,-the-etiological-agent-of-american-foulbrood-(afb)-in-honey-bees
Immunoassays for the detection and differentiation of Paenibacillus larvae, the etiological agent of American foulbrood (AFB) in honey bees

References

  1. Cornman, R. S. et al. Pathogen webs in collapsing honey bee colonies. PLoS One. 7, e43562 (2012).

    Google Scholar 

  2. Allsopp, M. H., de Lange, W. J. & Veldtman, R. Valuing insect pollination services with cost of replacement. PloS ONE. 3, e3128 (2008).

    Google Scholar 

  3. Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B 274, 303–313 (2007).

    Google Scholar 

  4. Kremen, C. et al. Pollination and other ecosystem services porduced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol. Lett. 10, 299–314 (2007).

    Google Scholar 

  5. Genersch, E. et al. Reclassification of Paenibacillus Larvae subsp. Pulvifaciens and Paenibacillus Larvae subsp. Larvae as Paenibacillus Larvae without subspecies differentiation. Int. J. Syst. Evol. Microbiol. 56, 501–511 (2006).

    Google Scholar 

  6. Genersch, E. & Otten, C. The use of repetitive element PCR fingerprinting (rep-PCR) for genetic subtyping of German field isolates of Paenibacillus larvae subsp. larvae. Apidologie 34, 195–206 (2003).

    Google Scholar 

  7. Morrissey, B. J. et al. Biogeography of Paenibacillus larvae, the causative agent of American foulbrood, using a new multilocus sequence typing scheme. Environ. Microbiol. 17, 1414–1424 (2015).

    Google Scholar 

  8. Beims, H. et al. Discovery of Paenibacillus larvae ERIC V: Phenotypic and genomic comparison to genotypes ERIC I-IV reveal different inventories of virulence factors which correlate with epidemiological prevalences of American foulbrood. Int. J. Med. Microbiol. 310, 151394 (2020).

    Google Scholar 

  9. Ebeling, J., Knispel, H., Fünfhaus, A. & Genersch, E. The biological role of the enigmatic C3larvinAB toxin of the honey bee pathogenic bacterium Paenibacillus larvae. Environ. Microbiol. 21, 3091–3106 (2019).

    Google Scholar 

  10. Djukic, M. et al. How to kill the honey bee larva: genomic potential and virulence mechanisms of Paenibacillus larvae. PLoS ONE. 9, e90914 (2014).

    Google Scholar 

  11. Fünfhaus, A., Ashiralieva, A., Borriss, R. & Genersch, E. Use of suppression subtractive hybridization to identify genetic differences between differentially virulent genotypes of Paenibacillus larvae, the etiological agent of American foulbrood of honeybees. Environ. Microbiol. Rep. 1, 240–250 (2009).

    Google Scholar 

  12. Ashiralieva, A. & Genersch, E. Reclassification, genotypes, and virulence of Paenibacillus larvae, the etiological agent of American foulbrood in honeybees – a review. Apidologie 37, 411–420 (2006).

    Google Scholar 

  13. Genersch, E., Ashiralieva, A. & Fries, I. Strain- and genotype-specific differences in virulence of Paenibacillus larvae subsp. larvae, a bacterial pathogen causing American foulbrood disease in honey bees. Appl. Environ. Microbiol. 71, 7551–7555 (2005).

    Google Scholar 

  14. Rauch, S., Ashiralieva, A., Hedtke, K. & Genersch, E. Negative correlation between individual-insect-level virulence and colony-level virulence of Paenibacillus larvae, the etiological agent of American foulbrood of honeybees. Appl. Environ. Microbiol. 75, 3344–3347 (2009).

    Google Scholar 

  15. Ebeling, J., Knispel, H., Hertlein, G., Fünfhaus, A. & Genersch, E. Biology of Paenibacillus larvae, a deadly pathogen of honey bee larvae. Appl. Microbiol. Biotechnol. 100, 7387–7395 (2016).

    Google Scholar 

  16. Poppinga, L. & Genersch, E. Molecular pathogenesis of American foulbrood: how Paenibacillus larvae kills honey bee larvae. Curr. Opin. Insect Sci. 10, 29–36 (2015).

    Google Scholar 

  17. Garcia-Gonzalez, E. et al. Paenibacillus larvae chitin-degrading protein PlCBP49 is a key virulence factor in American foulbrood of honey bees. PLoS Path. 10, e1004284 (2014).

    Google Scholar 

  18. Fünfhaus, A., Poppinga, L. & Genersch, E. Identification and characterization of two novel toxins expressed by the lethal honey bee pathogen Paenibacillus larvae, the causative agent of American foulbrood. Environ. Microbiol. 15, 2951–2965 (2013).

    Google Scholar 

  19. Poppinga, L. et al. Identification and functional analysis of the S-layer protein Spla of Paenibacillus larvae, the causative agent of American foulbrood of honey bees. PLoS Path. 8, e1002716 (2012).

    Google Scholar 

  20. Fünfhaus, A. & Genersch, E. Proteome analysis of Paenibacillus larvae reveals the existence of a putative S-layer protein. Environ. Microbiol. Rep. 4, 194–202 (2012).

    Google Scholar 

  21. Yue, D., Nordhoff, M., Wieler, L. H., Genersch, E. & Fluorescence situ-hybridization (FISH) analysis of the interactions between honeybee larvae and Paenibacillus larvae, the causative agent of American foulbrood of honeybees (Apis mellifera). Environ. Microbiol. 10, 1612–1620 (2008).

    Google Scholar 

  22. Anonymous. in Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2022: OIE Terrestrial Manual 2022 (ed OIE World Organisation for Animal Health) Ch. 3.2.2. 719–735 (World Organisation for Animal Health, 2022).

  23. Fünfhaus, A., Göbel, J., Ebeling, J., Knispel, H. & Genersch, E. Questions, problems, and solutions in the diagnosis of American Foulbrood – a German perspective. Berl Münch Tierärztl Wochenschr. 132, 26–34 (2019).

    Google Scholar 

  24. Neuendorf, S., Hedtke, K., Tangen, G. & Genersch, E. Biochemical characterization of different genotypes of Paenibacillus larvae subsp. larvae, a honey bee bacterial pathogen. Microbiology 150, 2381–2390 (2004).

    Google Scholar 

  25. Ebeling, J. et al. A comparison of different matrices for the laboratory diagnosis of the epizootic American foulbrood of honey bees. Vet. Sci. 10, 103 (2023).

    Google Scholar 

  26. Bailey, L. Melissococcus pluton, the cause of European foulbrood of honeybees (Apis ssp). J. Appl. Bacteriol. 55, 65–69 (1983).

    Google Scholar 

  27. de Graaf, D. C. et al. Standard methods for American foulbrood research. J. Apicult Res. 52, 1–27 (2013).

    Google Scholar 

  28. Aupperle-Lellbach, H., Poppinga, L., Fünfhaus, A. & Genersch, E. European foulbrood in honey bees (Apis mellifera): histological insights into the pathogenesis of larval infections with the low virulent Melissococcus Plutonius strain LMG20360T belonging to the clonal complex 13. Berl Münch Tierärztl Wochenschr. 132, 35–40 (2019).

    Google Scholar 

  29. Forsgren, E. European foulbrood in honey bees. J. Invertebr Pathol. 103, S5–S9 (2010).

    Google Scholar 

  30. Crailsheim, K. et al. Standard methods for artificial rearing of Apis mellifera larvae. J. Apicult Res. 52, 1–15 (2013).

    Google Scholar 

  31. Kilwinski, J., Peters, M., Ashiralieva, A. & Genersch, E. Proposal to reclassify Paenibacillus larvae subsp. Pulvifaciens DSM 3615 (ATCC 49843) as Paenibacillus larvae subsp. larvae. Results of a comparative biochemical and genetic study. Vet. Microbiol. 104, 31–42 (2004).

    Google Scholar 

  32. Köhler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    Google Scholar 

  33. Waldmann, H. & Lefkovits, I. Limiting Dilution analysis of cells of the immune system II: What can be learnt? Immunol. Today. 5, 295–298 (1984).

    Google Scholar 

  34. Urusov, A. E., Zherdev, A. V. & Dzantiev, B. B. Towards lateral flow quantitative assays: Detection approaches. Biosensors 9, 89 (2019).

    Google Scholar 

  35. Hornitzky, M. A. Z. & Karlovskis, S. A culture technique for the detection of Bacillus larvae in honeybees. J. Apicult Res. 28, 118–120 (1989).

    Google Scholar 

  36. Plagemann, O. Eine einfache kulturmethode Zur Bakteriologischen identifizierung von Bacillus larvae Mit Columbia-Blut-Schrägagar. Berl Münch Tierärztl Wschr. 98, 61–62 (1985).

    Google Scholar 

  37. Djordjevic, S., Ho-Shon, M. & Hornitzky, M. DNA restriction endonuclease profiles and typing of geographically diverse isolates of Bacillus larvae. J. Apicult Res. 33, 95–103 (1994).

    Google Scholar 

  38. De Graaf, D. C. et al. Identification of Paenibacillus larvae to the subspecies level: an obstacle for AFB diagnosis. J. Invertebr Pathol. 91, 115–123 (2006).

    Google Scholar 

  39. Schäfer, M. O. et al. Rapid identification of differentially virulent genotypes of Paenibacillus larvae, the causative organism of American foulbrood of honey bees, by whole cell MALDI-TOF mass spectrometry. Vet. Microbiol. 170, 291–297 (2014).

    Google Scholar 

  40. Boehringer, H. R. & O´Farrell, B. J. Lateral flow assays in infectious disease diagnosis. Clin. Chem. 68, 52–58 (2022).

    Google Scholar 

  41. Ngom, B., Guo, Y., Wang, X. & Bi, D. Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants: a review. Anal. Bioanal Chem. 397, 1113–1135 (2010).

    Google Scholar 

  42. Posthuma-Trumpie, G. A., Korf, J. & van Amerongen, A. Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal. Bioanal Chem. 393, 569–582 (2009).

    Google Scholar 

  43. Peng, Y. S. & Peng, K. Y. A study on the possible utilization of immunodiffusion and Immunofluorescence techniques as diagnostic methods for American Fouldbrood of honeybees (Apis mellifera). J. Invertebr Pathol. 33, 284–289 (1979).

    Google Scholar 

  44. Otte, E. Contribution to the laboratory diagnosis of American foulbrood (A.F.B.) of the honey bee with particular reference to the fluorescent antibody technique. Apidologie 4, 331–339 (1973).

    Google Scholar 

  45. Olsen, P. E., Grant, G. A., Nelson, D. L. & Rice, W. A. Detection of American foulbrood diseae of the honey bee, using a monoclonal antibody specific to Bacillus larvae in an enzyme-linked immunosorbent assay. Can. J. Micobiol. 36, 732–735 (1990).

    Google Scholar 

  46. Saville, B. G. Differentiation of virulent and biological control Paenibacillus larvae strains associated with American Foulbrood in bee hives. PhD Thesis (2011).

  47. Ebeling, J. et al. Characterization of the toxin Plx2A, a RhoA-targeting ADP-ribosyltransferase produced by the honey bee pathogen Paenibacillus larvae. Environ. Microbiol. 19, 5100–5116 (2017).

    Google Scholar 

  48. Hertlein, G. et al. Production of the catechol type siderophore bacillibactin by the honey bee pathogen Paenibacillus larvae. PLoS ONE. 9, e108272 (2014).

    Google Scholar 

  49. Hertlein, G. et al. Biological role of paenilarvins, iturin-like lipopeptide secondary metabolites produced by the honey bee pathogen Paenibacillus larvae. PLoS ONE. 11, e0164656 (2016).

    Google Scholar 

  50. Müller, S., Garcia-Gonzalez, E., Genersch, E. & Süssmuth, R. Involvement of secondary metabolites in the pathogenesis of the American foulbrood of honey bees caused by Paenibacillus larvae. Nat. Prod. Rep. 32, 765–778 (2015).

    Google Scholar 

  51. Genersch, E. American foulbrood in honeybees and its causative agent, Paenibacillus larvae. J. Invertebr Pathol. 103, S10–S19 (2010).

    Google Scholar 

  52. de Miranda, J., Cordoni, G. & Budge, G. The acute bee paralysis virus – Kashmir bee virus – Israeli acute paralysis virus complex. J. Invertebr Pathol. 103, S30–S47 (2010).

    Google Scholar 

  53. Han, S. H., Lee, D. B., Lee, D. W., Kim, E. H. & Yoon, B. S. Ultra-rapid real-time PCR for the detection of Paenibacillus larvae, the causative agent of American foulbrood (AFB). J. Invertebr Pathol. 99, 8–13 (2008).

    Google Scholar 

  54. Martinez, J., Simon, V., Gonzalez, B. & Conget, P. A real-time PCR-based strategy for the detection of Paenibacillus larvae vegetative cells and spores to improve the diagnosis and the screening of American foulbrood. Lett. Appl. Microbiol. 50, 603–610 (2010).

    Google Scholar 

  55. Mistry, D. A., Wang, J. Y., Moeser, M. E., Starkey, T. & Lee, L. Y. W. A systematic review of the sensitivity and specificity of lateral flow devices in the detection of SARS–CoV–2. BMC Infect. Dis. 21, 828 (2021).

    Google Scholar 

Download references