References
-
Yamanouchi, T., Sakakami, K. & Iwashima, S. The infecting agent in influenza: an experimental research. The Lancet 193, 971 (1919).
-
Lebailly, C. N. C. Quelques notions expérimentales sur le virus de la grippe [Certain experimental ideas about the infectious agent of influenza]. C. R. Acad. Sci. 167, 607–610 (1918).
-
Taubenberger, J. K., Hultin, J. V. & Morens, D. M. Discovery and characterization of the 1918 pandemic influenza virus in historical context. Antivir. Ther. 12, 581–591 (2007).
-
Burnet, F. M. Influenza virus infections of the chick embryo lung. Br. J. Exp. Pathol. 21, 147–153 (1940).
-
Stanley, W. M. The preparation and properties of influenza virus vaccines concentrated and purified by differential centrifugation. J. Exp. Med. 81, 193–218 (1945).
-
Trombetta, C. M., Kistner, O., Montomoli, E., Viviani, S. & Marchi, S. Influenza viruses and vaccines: the role of vaccine effectiveness studies for evaluation of the benefits of influenza vaccines. Vaccines (Basel) 10, 714 (2022).
-
Guo, J. et al. Real-world effectiveness of seasonal influenza vaccination and age as effect modifier: a systematic review, meta-analysis and meta-regression of test-negative design studies. Vaccine 42, 1883–1891 (2024).
-
Rose, A. M. C. et al. Vaccine effectiveness against influenza hospitalisation in adults during the 2022/2023 mixed season of influenza A(H1N1)pdm09, A(H3N2) and B circulation, Europe: VEBIS SARI VE hospital network. Influenza Other Respir. Viruses 18, e13255 (2024).
-
Kim DeLuca, E. et al. Cost-effectiveness of routine annual influenza vaccination by age and risk status. Vaccine 41, 4239–4248 (2023).
-
Waterlow, N. R. et al. The potential cost-effectiveness of next generation influenza vaccines in England and Wales: a modelling analysis. Vaccine 41, 6017–6024 (2023).
-
Chen, Y. Q. et al. Influenza infection in humans induces broadly cross-reactive and protective neuraminidase-reactive antibodies. Cell 173, 417–429.e10 (2018).
-
Krammer, F. The human antibody response to influenza A virus infection and vaccination. Nat. Rev. Immunol. 19, 383–397 (2019).
-
de Vries, E., Du, W., Guo, H. & de Haan, C. A. M. Influenza A virus hemagglutinin–neuraminidase–receptor balance: preserving virus motility. Trends Microbiol. 28, 57–67 (2020).
-
Matrosovich, M. N., Matrosovich, T. Y., Gray, T., Roberts, N. A. & Klenk, H.-D. Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J. Virol. 78, 12665–12667 (2004).
-
Palese, P., Tobita, K., Ueda, M. & Compans, R. W. Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology 61, 397–410 (1974).
-
Monto, A. rnoldS. & Kendal, A. lanP. Effect of neuraminidase antibody on Hong Kong. Lancet 301, 623–625 (1973).
-
Murphy, B. R., Kasel, J. A. & Chanock, R. M. Association of serum anti-neuraminidase antibody with resistance to influenza in man. New Engl. J. Med. 286, 1329–1332 (1972).
-
Couch, R. B., Kasel, J. A., Gerin, J. L., Schulman, J. L. & Kilbourne, E. D. Induction of partial immunity to influenza by a neuraminidase-specific vaccine. J. Infect. Dis. 129, 411–420 (1974).
-
Rosu, M. E. et al. Contribution of neuraminidase to the efficacy of seasonal split influenza vaccines in the ferret model. J. Virol. 96, e0195921 (2022).
-
Monto, A. S. et al. Antibody to influenza virus neuraminidase: an independent correlate of protection. J. Infect. Dis. 212, 1191–1199 (2015).
-
Memoli, M. J. et al. Evaluation of antihemagglutinin and antineuraminidase antibodies as correlates of protection in an influenza A/H1N1 virus healthy human challenge model. mBio 7, e00417-16 (2016).
-
Krammer, F. et al. NAction! How can neuraminidase-based immunity contribute to better influenza virus vaccines? mBio 9, e02332-17 (2018).
-
Cox, M. M. J., Izikson, R., Post, P. & Dunkle, L. Safety, efficacy, and immunogenicity of Flublok in the prevention of seasonal influenza in adults. Ther. Adv. Vaccines 3, 97 (2015).
-
Fiers, W., Neirynck, S., Deroo, T., Saelens, X. & Jou, W. M. Soluble recombinant influenza vaccines. Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 356, 1961–1963 (2001).
-
Sultana, I. et al. Stability of neuraminidase in inactivated influenza vaccines. Vaccine 32, 2225–2230 (2014).
-
Strohmeier, S. et al. A novel recombinant influenza virus neuraminidase vaccine candidate stabilized by a measles virus phosphoprotein tetramerization domain provides robust protection from virus challenge in the mouse model. mBio 12, e0224121 (2021).
-
Chivukula, S. et al. Development of multivalent mRNA vaccine candidates for seasonal or pandemic influenza. NPJ Vaccines 6, 153 (2021).
-
Catani, J. P. P. et al. Pre-existing antibodies directed against a tetramerizing domain enhance the immune response against artificially stabilized soluble tetrameric influenza neuraminidase. npj Vaccines 7, 1–9 (2022).
-
Schmidt, P. M., Attwood, R. M., Mohr, P. G., Barrett, S. A. & McKimm-Breschkin, J. L. A Generic system for the expression and purification of soluble and stable influenza Neuraminidase. PLoS ONE 6, e16284–e16284 (2011).
-
Karikó, K., Muramatsu, H., Keller, J. M. & Weissman, D. Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. Mol. Ther. 20, 948–953 (2012).
-
Zhang, H. et al. Deep generative models design mRNA sequences with enhanced translational capacity and stability. Science 390, eadr8470 (2025).
-
Stadler, C. R. et al. Preclinical efficacy and pharmacokinetics of an RNA-encoded T cell—engaging bispecific antibody targeting human claudin 6. Sci. Transl. Med. 16, eadl2720 (2024).
-
Goodwin, E., Gibbs, J. S., Yewdell, J. W., Eisenlohr, L. C. & Hensley, S. E. Influenza virus antibodies inhibit antigen-specific de novo B cell responses in mice. J. Virol. 98, e00766-24 (2024).
-
Willis, E. et al. Nucleoside-modified mRNA vaccination partially overcomes maternal antibody inhibition of de novo immune responses in mice. Sci. Transl. Med. 12, eaav5701 (2020).
-
Leonard, R. A. et al. Improved influenza vaccine responses after expression of multiple viral glycoproteins from a single mRNA. Nat. Commun. 15, 8712 (2024).
-
Stacey, H. et al. Leveraging pre-vaccination antibody titres across multiple influenza H3N2 variants to forecast the post-vaccination response. eBioMedicine 116, https://doi.org/10.1016/j.ebiom.2025.105744 (2025).
-
Magnusson, S. E. et al. Immune enhancing properties of the novel Matrix-MTM adjuvant leads to potentiated immune responses to an influenza vaccine in mice. Vaccine 31, 1725–1733 (2013).
-
Rudicell, R. S. et al. Comparison of adjuvants to optimize influenza neutralizing antibody responses. Vaccine 37, 6208–6220 (2019).
-
McElhaney, J. E. et al. AS03-adjuvanted versus non-adjuvanted inactivated trivalent influenza vaccine against seasonal influenza in elderly people: a phase 3 randomised trial. Lancet Infect. Dis. 13, 485–496 (2013).
-
Ustyugova, I. V. et al. AF03 adjuvant improves anti-hemagglutinin and anti-neuraminidase immune responses induced by licensed seasonal quadrivalent influenza vaccines in mice. Vaccine 41, 2022–2034 (2023).
-
Cox, M. M. J. & Karl Anderson, D. Production of a novel influenza vaccine using insect cells: protection against drifted strains. Influenza Other Respir. Viruses 1, 35–40 (2007).
-
Marsh, G. & Tannock, G. The role of reverse genetics in the development of vaccines against respiratory viruses. Expert Opin. Biol. Ther. 5, 369–380 (2005).
-
Hoffmann, E., Neumann, G., Kawaoka, Y., Hobom, G. & Webster, R. G. A DNA transfection system for generation of influenza A virus from eight plasmids. Proc. Natl. Acad. Sci. USA 97, 6108–6113 (2000).
-
McCullers, J. A., Hoffmann, E., Huber, V. C. & Nickerson, A. D. A single amino acid change in the C-terminal domain of the matrix protein M1 of influenza B virus confers mouse adaptation and virulence. Virology 336, 318–326 (2005).
-
Job, E. R. et al. Antibodies directed toward neuraminidase N1 control disease in a mouse model of influenza. J. Virol. 92, https://doi.org/10.1128/JVI.01584-17 (2018).
-
Caillet, C. et al. AF03-adjuvanted and non-adjuvanted pandemic influenza A (H1N1) 2009 vaccines induce strong antibody responses in seasonal influenza vaccine-primed and unprimed mice. Vaccine 28, 3076–3079 (2010).
