References
-
Brumfield, K. D. et al. Environmental parameters associated with incidence and transmission of pathogenic Vibrio spp. Environ. Microbiol. 23(12), 7314–7340 (2021).
-
Lee, J. V., Shread, P., Furniss, A. L. & Bryant, T. N. Taxonomy and description of Vibrio fluvialis sp. Nov. (synonym group F vibrios, group EF6). J. Appl. Bacteriol. 50(1), 73–94 (1981).
-
Abioye, O. E., Osunla, A. C. & Okoh, A. I. Molecular detection and distribution of six medically important Vibrio spp. in selected freshwater and brackish water resources in Eastern Cape Province, South Africa. Front Microbiol. 12, 617703 (2021).
-
Zhou, Y. et al. Virulence, antibiotic resistance phenotypes and molecular characterisation of Vibrio furnissii isolates from patients with diarrhoea. BMC Infect Dis. 24(1), 412 (2024).
-
Albert, V. et al. Comprehending the risk of foodborne and waterborne disease outbreaks: Current situation and control measures with Special reference to the Indian Scenario. Heliyon 10(16), e36344 (2024).
-
Chowdhury, G. et al. An outbreak of foodborne gastroenteritis caused by dual pathogens, Salmonella enterica serovar Weltevreden and Vibrio fluvialis in Kolkata, India. Foodborne Pathog. Dis. 10(10), 940–906 (2013).
-
Sodders, N., Stockdale, K., Baker, K., Ghanem, A., Vieth, B. & Harder, T. Notes from the field: Vibriosis cases associated with flood waters during and after hurricane Ian—Florida, September–October 2022. MMWR Morb Mortal Wkly Rep. 72(18) (2023).
-
Ovuru, K. F., Izah, S. C., Ogidi, O. I., Imarhiagbe, O. & Ogwu, M. C. Slaughterhouse facilities in developing nations: Sanitation and hygiene practices, microbial contaminants and sustainable management system. Food Sci. Biotechnol. 33(3), 519–537 (2024).
-
Mohebi, S., Saboorian, R. & Shams, S. The first report of Vibrio fluvialis isolated from a clinical sample in Iran. Iran J. Microbiol. 14(5), 677 (2022).
-
Bej, S. et al. Wastewater-associated infections: A public health concern. Water Air Soil Pollut. 234(7), 444 (2023).
-
Nalin, D. R. The history of intravenous and oral rehydration and maintenance therapy of cholera and non-cholera dehydrating diarrheas: A deconstruction of translational medicine: From bench to bedside?. Trop. Med. Infect. Dis. 7(3), 50 (2022).
-
Koutsoumanis, K. et al. Public health aspects of Vibrio spp. related to the consumption of seafood in the EU. Efsa J. 22(7), e8896 (2024).
-
Jayakumar, J. M. et al. Climate change and Vibrio vulnificus dynamics: A blueprint for infectious diseases. PLoS Pathog. 20(12), e1012767 (2024).
-
Xiao, H. et al. Evaluation of the multivalent immune protective effects of the Vibrio fluvialis outer membrane protein VF17320, and its DNA and IgY antibody vaccines in fish. Front Vet Sci. 12, 1586258 (2025).
-
Lim, S. M. & Webb, S. A. Nosocomial bacterial infections in Intensive Care Units. I: Organisms and mechanisms of antibiotic resistance. Anaesthesia 60(9), 887–902 (2005).
-
Chiș, A. A. et al. Microbial resistance to antibiotics and effective antibiotherapy. Biomedicines 10(5), 1121 (2022).
-
Miller, W. R. & Arias, C. A. ESKAPE pathogens: Antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nat. Rev. Microbiol. 22(10), 598–616 (2024).
-
Sarma, D., Chandra, S. & Mallik, S. K. Aquaculture and Conservation of Inland Coldwater Fishes (Springer, New York, 2024).
-
Mishra, A., Kim, H. S., Kumar, R. & Srivastava, V. Advances in vibrio-related infection management: an integrated technology approach for aquaculture and human health. Crit. Rev. Biotechnol. 44(8), 1610–1637 (2024).
-
Solana, J. C., Moreno, J., Iborra, S., Soto, M. & Requena, J. M. Live attenuated vaccines, a favorable strategy to provide long-term immunity against protozoan diseases. Trends Parasitol. 38(4), 316–334 (2022).
-
Prakash, S. et al. Cross-protection induced by highly conserved human B, CD4(+), and CD8(+) T-cell epitopes-based vaccine against severe infection, disease, and death caused by multiple SARS-CoV-2 variants of concern. Front Immunol. 15, 1328905 (2024).
-
Bhattacharjee, M., Banerjee, M. & Mukherjee, A. Advanced in silico design of an optimized multi-epitope peptide vaccine employing immunoinformatics and reverse vaccinology strategies on the model of Listeria monocytogenes. J. Proteins Proteom. 16(2), 1–24 (2025).
-
Yan, Q. Pharmacogenomics in Drug Discovery and Development (Springer, New York, 2008).
-
Singh, D. B. Computer-Aided Drug Design (Springer, New York, 2020).
-
Xiao, H. et al. Evaluation of the multivalent immunoprotective effects of protein, DNA, and IgY vaccines against Vibrio fluvialis outer membrane protein VF14355 in Carassius auratus. Int. J. Mol. Sci. 26(7), 3379 (2025).
-
Oladipo, E. K. et al. Bioinformatics analysis of structural protein to approach a vaccine candidate against Vibrio cholerae infection. Immunogenetics 75(2), 99–114 (2023).
-
Li, C. et al. Identification of a novel vaccine candidate by immunogenic screening of Vibrio parahaemolyticus outer membrane proteins. Vaccine. 32(46), 6115–6121 (2014).
-
Basmenj, E. R. et al. Computational epitope-based vaccine design with bioinformatics approach: A review. Heliyon. 11(1), e41714 (2025).
-
Bieniossek, C. et al. The molecular architecture of the metalloprotease FtsH. Proc. Natl. Acad. Sci. U. S. A. 103(9), 3066–3071 (2006).
-
Weaver, A. I. et al. Lytic transglycosylases RlpA and MltC assist in Vibrio cholerae daughter cell separation. Mol Microbiol. 112(4), 1100–1115 (2019).
-
Ahmad, S. et al. The UniProt website API: Facilitating programmatic access to protein knowledge. Nucleic Acids Res. (2025).
-
Doytchinova, I. A. & Flower, D. R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 8(1), 4 (2007).
-
Dimitrov, I., Bangov, I., Flower, D. R. & Doytchinova, I. AllerTOP v. 2—a server for in silico prediction of allergens. J. Mol. Model. 20(6), 2278 (2014).
-
Teufel, F. et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. 40(7), 1023–1025 (2022).
-
Roohparvar Basmenj, E. et al. A novel approach to design a multiepitope peptide as a vaccine candidate for Bordetella pertussis. J. Biomol. Struct. Dyn. 42(24), 13738–13750 (2024).
-
Acha Alarcon, L. et al. Identification of Streptococcus pneumoniae-specific proteins by surface-shaving proteomics. J. Proteome Res. 24, 6154–6173 (2025).
-
Prado, L. C. D. S. et al. New putative therapeutic targets against Serratia marcescens using reverse vaccinology and subtractive genomics. J. Biomol. Struct. Dyn. 40(20), 10106–10121 (2022).
-
Yan, Z. et al. Next-generation IEDB tools: A platform for epitope prediction and analysis. Nucleic Acids Res. 52(W1), W526–W532 (2024).
-
Dimitrov, I., Zaharieva, N. & Doytchinova, I. Bacterial immunogenicity prediction by machine learning methods. Vaccines (Basel). 8(4), 709 (2020).
-
Bui, H. H., Sidney, J., Li, W., Fusseder, N. & Sette, A. Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines. BMC Bioinform. 8, 361 (2007).
-
Roohparvar Basmenj, E., Omidvar, B., Kiumarsy, A., Izadkhah, H. & Ghiabi, S. Design of a multi-epitope-based peptide vaccine against the SARS-CoV-2 Omicron variant using bioinformatics approach. J. Biomol. Struct. Dyn. 42(15), 7945–7956 (2024).
-
Bui, H. H. et al. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinform. 7, 153 (2006).
-
Mishra, S. K. et al. Integrated immunoinformatics and reverse vaccinology assisted novel multi-epitope vaccine against Coxsackievirus A10 investigating its whole genome encoded polyprotein. J. Mol. Liq. 433, 127883 (2025).
-
Kumar Mishra, S. et al. An integrated mutation-based immunoinformatic approach incorporating variability in epitopes: A study based on HIV subtype C. Front Immunol. 16, 1540253 (2025).
-
Zhao, T. et al. Vaccine adjuvants: Mechanisms and platforms. Signal Transduct. Target. Ther. 8(1), 283 (2023).
-
Bramwell, V. W., Somavarapu, S., Outschoorn, I. & Alpar, H. O. Adjuvant action of melittin following intranasal immunisation with tetanus and diphtheria toxoids. J. Drug Target. 11(8–10), 525–530 (2003).
-
Alqarni, A. M., Ferro, V. A., Parkinson, J. A., Dufton, M. J. & Watson, D. G. Effect of melittin on metabolomic profile and cytokine production in PMA-differentiated THP-1 cells. Vaccines (Basel) 6(4), 72 (2018).
-
Sanches, R. C. O. et al. Immunoinformatics design of multi-epitope peptide-based vaccine against Schistosoma mansoni using transmembrane proteins as a target. Front Immunol. 12, 621706 (2021).
-
Alsowayeh, N., Albutti, A. & Al-Shouli, S. T. Reverse vaccinology and immunoinformatic assisted designing of a multi-epitopes based vaccine against nosocomial Burkholderia cepacia. Front Microbiol. 13, 929400 (2022).
-
Naveed, M. et al. Development of a broad-spectrum multiepitope vaccine against dabie bandavirus through immunoinformatic approaches. Int Immunopharmacol. 166, 115492 (2025).
-
Walker, J. M. The Proteomics Protocols Handbook (Springer, New York, 2005).
-
Hanif, N. et al. In silico characterization of hypothetical protein AZJ53_10480 in Streptococcus pneumoniae. BioScientific Rev. 6(4), 1–12 (2024).
-
Hon, J. et al. SoluProt: Prediction of soluble protein expression in Escherichia coli. Bioinformatics 37(1), 23–28 (2021).
-
Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630(8016), 493–500 (2024).
-
Seok, C. et al. Accurate protein structure prediction: What comes next. Biodesign 9(3), 47–50 (2021).
-
Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: A program to check the stereochemical quality of protein structures. Appl. Crystallogr. 26(2), 283–291 (1993).
-
Hanif, N. et al. Computational drug design targeting MYH7 for hypertrophic cardiomyopathy integrating molecular docking, Density Functional Theory, and Molecular Dynamics Simulations. J. Appl. Biol. Sci. 19(3), 179–192 (2025).
-
Wiederstein, M. & Sippl, M. J. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 35(suppl_2), W407–W410 (2007).
-
Ponomarenko, J. et al. ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinform. 9, 514 (2008).
-
Mishra, S. K. et al. Integrated immuno and bioinformatics assisted novel epitope vaccine against HIV infection: A study based on complete genome. Virol. J. 22(1), 228 (2025).
-
Yan, Y., Tao, H., He, J. & Huang, S.-Y. The HDOCK server for integrated protein–protein docking. Nat. Protocols. 15(5), 1829–1852 (2020).
-
Oliveira-Nascimento, L., Massari, P. & Wetzler, L. M. The role of TLR2 in infection and immunity. Front. Immunol. 3, 79 (2012).
-
Singh, S. et al. In-silico development of a novel TLR2-mediating multi-epitope vaccine against Mycobacterium tuberculosis. In Silico Pharmacol. 13(1), 34 (2025).
-
Kozakov, D. et al. The ClusPro web server for protein–protein docking. Nat. Protocols 12(2), 255–278 (2017).
-
Laskowski, R. A. PDBsum 1: A standalone program for generating PDBsum analyses. Protein Sci. 31(12), e4473 (2022).
-
Sadia, H. et al. Natural AI-based drug designing by modification of ascorbic acid and curcumin to combat buprofezin toxicity by using molecular dynamics study. Sci. Rep. 14(1), 28445 (2024).
-
Naveed, M. et al. Computational drug design for neurosyphilis disease by targeting Phosphoglycerate Kinase in Treponema pallidum with enhanced binding affinity and reduced toxicity. Sci. Rep. 15, 1–22 (2025).
-
Naveed, M. et al. In-silico and computational active site-driven design and characterization of beta-NGF-Ab fusion protein as a novel and targeted Alzheimer’s disease therapy. J. Comput. Biophys. Chem. 1(16), 16 (2025).
-
Naveed, M. et al. Combining network pharmacology and computational approaches for screening of apiaceae-derived phytochemicals as inhibitors of DNA polymerase III in Streptococcus pyogenes causing streptococcal toxic shock syndrome. Chinese J. Anal. Chem. 53, 100632 (2025).
-
Naveed, M. et al. Rational computational design and development of an immunogenic multiepitope vaccine incorporating transmembrane proteins of Fusobacterium necrophorum. Sci. Rep. 15(1), 15587 (2025).
-
Laubenbacher, R. et al. Toward mechanistic medical digital twins: some use cases in immunology. Front. Digit. Health 6, 1349595 (2024).
-
Madeira, F. et al. The EMBL-EBI job dispatcher sequence analysis tools framework in 2024. Nucleic Acids Res. 52(W1), W521–W525 (2024).
-
Yin, Z. et al. Design of multi-epitope vaccine candidate against Brucella type IV secretion system (T4SS). PLoS ONE 18(8), e0286358 (2023).
-
Naveed, M. et al. Designing IL-24–P18 fusion protein through computational engineering for targeted breast cancer therapy. J. Comput. Biophys. Chem. 25(1), 109–123 (2026).
-
Takezawa, T. et al. Vibrio fluvialis bacteremia in an immunocompetent patient with acute cholangitis. Internal Med. 63(22), 3101–3104 (2024).
-
Wang, Y., Luo, J., Zhao, Y., Zhang, J., Guan, X. & Sun, L. Haemolysins are essential to the pathogenicity of deep-sea Vibrio fluvialis. iScience 27(5),109558 (2024).
-
Zheng, H. et al. Population genomics of the food-borne pathogen Vibrio fluvialis reveals lineage associated pathogenicity-related genetic elements. Microb Genom. 8(2), 000769 (2022).
-
Ramalingam, P. S. & Arumugam, S. Reverse vaccinology and immunoinformatics approaches to design multi-epitope based vaccine against oncogenic KRAS. Med Oncol. 40(10), 283 (2023).
-
Qiu, J. et al. Integrated in-silico design and in vivo validation of multi-epitope vaccines for norovirus. Virol J. 22(1), 166 (2025).
-
Moradkasani, S. et al. Development of a multi-epitope vaccine from outer membrane proteins and identification of novel drug targets against Francisella tularensis: An in silico approach. Front Immunol. 16, 1479862 (2025).
-
Guo, W. et al. In silico design of a multi-epitope vaccine against Mycobacterium avium subspecies paratuberculosis. Front Immunol. 16, 1505313 (2025).
-
Roy, A. et al. Integrating pan-genome and reverse vaccinology to design multi-epitope vaccine against Herpes simplex virus type-1. 3 Biotech. 14(7), 176 (2024).
-
Biswas, R. et al. Designing multi-epitope vaccine against human cytomegalovirus integrating pan-genome and reverse vaccinology pipelines. Biologicals 87, 101782 (2024).
-
Koupaei, F. N. et al. Design of a multi-epitope vaccine candidate against Vibrio cholerae. Sci. Rep. 15(1), 11033 (2025).
-
Tahir Ul Qamar, M. et al. Designing multi-epitope vaccine against Staphylococcus aureus by employing subtractive proteomics, reverse vaccinology and immuno-informatics approaches. Comput. Biol. Med. 132, 104389 (2021).
-
Zhu, F. et al. Designing a multi-epitope vaccine against Pseudomonas aeruginosa via integrating reverse vaccinology with immunoinformatics approaches. Sci. Rep. 15(1), 10425 (2025).
-
Naveed, M. et al. Integrating 16S rRNA identification for a promising epitope-based vaccine strategy against Bacillus licheniformis infections causing foodborne illness. Allergol. Immunopathol. 54(1), 105–122 (2026).
-
Biswas, R. & Anbarasu, A. Identification of novel zinc-binding inhibitors against key microbial metallohydrolase DapE in Klebsiella pneumoniae: An integrated ligand-based virtual screening, molecular docking, molecular dynamics, and MM/PBSA approach. Integr. Biol. 17, zyaf018 (2025).
