Immunoinformatics-guided design of a universal chimeric multi-epitope subunit vaccine against Marburg virus disease and Ravn virus co-infection

immunoinformatics-guided-design-of-a-universal-chimeric-multi-epitope-subunit-vaccine-against-marburg-virus-disease-and-ravn-virus-co-infection
Immunoinformatics-guided design of a universal chimeric multi-epitope subunit vaccine against Marburg virus disease and Ravn virus co-infection

Data availability

All data generated or analysed during this study are included in this article and its supplementary information files.

References

  1. Kortepeter, M. G. et al. Marburg virus disease: a summary for clinicians. Int. J. Infect. Dis. 99, 233–242 (2020).

    Google Scholar 

  2. Kuhn, J. H. et al. New filovirus disease classification and nomenclature. Nat. Rev. Microbiol. 17 (5), 261–263 (2019).

    Google Scholar 

  3. Shifflett, K. & Marzi, A. Marburg virus pathogenesis: differences and similarities in humans and animal models. Virol. J. 16 (1), 165 (2019).

    Google Scholar 

  4. World Health Organization. Marburg virus disease. (2025).

  5. Pervin, T. & Oany, A. R. Vaccinomics approach for designing potential epitope-based peptide vaccine targeting L-protein of Marburg virus. Silico Pharmacol. 9 (1), 21 (2021).

    Google Scholar 

  6. Islam, M. R., Akash, S., Rahman, M. M. & Sharma, R. Epidemiology, pathophysiology, transmission, genomic structure, treatment and future perspectives of the novel Marburg virus outbreak. Int. J. Surg. 109, 36–38 (2023).

    Google Scholar 

  7. Stille, W. & Böhle, E. Clinical course and prognosis of Marburg virus (green-monkey) disease. In Marburg Virus Disease 10–18Springer, Berlin, Heidelberg, (1971).

  8. Abdelrahman, A. H. et al. Exploration of African natural products as VP35 inhibitors to combat Marburg virus infection: molecular docking, molecular dynamics and quantum mechanical computations. PLoS One 20(10), e0334160 (2025).

  9. Hasnain, A. et al. AI-driven in Silico discovery and design of antiviral candidates targeting Marburg virus nucleoprotein. Lett. Drug Des. Discov 22(3), 100030 (2025).

  10. Jia, Y. et al. Sweet syndrome induced by SARS-CoV-2 vaccines: a systematic review of patient-report studies. Hum. Vaccin Immunother. 19, 2217076 (2023).

    Google Scholar 

  11. Xu, K. et al. Clinical features, diagnosis, and management of COVID-19 vaccine-associated Vogt–Koyanagi–Harada disease. Hum. Vaccin Immunother. 19, 2220630 (2023).

    Google Scholar 

  12. Kim, H. M. et al. Crystal structure of the TLR4–MD-2 complex with bound endotoxin antagonist Eritoran. Cell 130, 906–917 (2007).

    Google Scholar 

  13. Kim, J., Yang, Y. L., Jang, S. H. & Jang, Y. S. Human β-defensin 2 regulates innate antiviral immunity and potentiates antigen-specific immunity. Virol. J. 15 (1), 1–12 (2018).

    Google Scholar 

  14. Salomon-Ferrer, R. et al. Routine microsecond molecular dynamics simulations with AMBER on gpus: explicit solvent particle mesh Ewald. J. Chem. Theory Comput. 9 (9), 3878–3888 (2013).

    Google Scholar 

  15. Bhardwaj, V. K. & Purohit, R. Targeting the protein–protein interface pocket of the aurora-A–TPX2 complex: rational drug design and validation. J. Biomol. Struct. Dyn. 39 (11), 3882–3891 (2021).

    Google Scholar 

  16. Roe, D. R. & Cheatham, T. E. PTRAJ and CPPTRAJ: software for processing and analyzing molecular dynamics trajectories. J. Chem. Theory Comput. 9 (7), 3084–3095 (2013).

    Google Scholar 

  17. Wang, W. et al. Emerging strategies for monkeypox: antigen and antibody applications in diagnostics, vaccines, and treatments. Mil Med. Res. 12, 69 (2025).

    Google Scholar 

  18. Zhang, H. Q. et al. An analysis of reported cases of hemophagocytic lymphohistiocytosis (HLH) after COVID-19 vaccination. Hum. Vaccin Immunother. 19, 2263229 (2023).

    Google Scholar 

  19. Khan, A. et al. Immunogenomics-guided design of Immunomodulatory multi-epitope subunit vaccine against SARS-CoV-2 variants. Comput. Biol. Med. 133, 104420 (2021).

    Google Scholar 

  20. Liu, B. et al. Developing a new sepsis screening tool based on lymphocyte count, international normalized ratio and procalcitonin (LIP score). Sci. Rep. 12, 20002 (2022).

    Google Scholar 

  21. Gasteiger, E. et al. Humana Press,. Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook 571–607 (2005).

  22. Kawai, T. & Akira, S. Pathogen recognition with Toll-like receptors. Curr. Opin. Immunol. 17 (4), 338–344 (2005).

    Google Scholar 

  23. Kawai, T. & Akira, S. Innate immune recognition of viral infection. Nat. Immunol. 7 (2), 131–137 (2006).

    Google Scholar 

  24. Pasare, C. & Medzhitov, R. Toll-like receptors: linking innate and adaptive immunity. Mech. Lymphocyte Activ Immune Regul. X, 11–18 (2005).

    Google Scholar 

  25. Grote, A. et al. JCat: a tool for adapting codon usage to expression hosts. Nucleic Acids Res. 33, W526–W531 (2005).

    Google Scholar 

  26. Kang, S. M. & Compans, R. W. Host responses from innate to adaptive immunity after vaccination. Mol. Cells. 27 (1), 5–14 (2009).

    Google Scholar 

Download references

Acknowledgements

This study was supported by College of Medicine, Shandong Xiehe University.

Funding

This study was funded by College of Medicine, Shandong Xiehe University, (SDXHQD2025083).

Author information

Authors and Affiliations

  1. School of Medical Sciences, Shandong Xiehe University, Jinan, 250109, P. R. China

    Sardar Ali

  2. Department of Biochemistry, University of Veterinary and Animal Sciences Swat, Swat, KP, Pakistan

    Abdullah Shah

  3. Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, 18000, Pakistan

    Sikandar Khan

  4. Biomedical Research Center, Qatar University, Doha, 2713, Qatar

    Muhammad Suleman

  5. Department of Basic and Applied zoology, Shaheed Benazir Bhutto University, Sheringal, 18000, Pakistan

    Ziaul Islam

  6. Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China

    Muhammad Tahir Aleem

  7. Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH, 44115, USA

    Muhammad Tahir Aleem

Authors

  1. Sardar Ali
  2. Abdullah Shah
  3. Sikandar Khan
  4. Muhammad Suleman
  5. Ziaul Islam
  6. Muhammad Tahir Aleem

Contributions

**S. Ali, A. Shah, M.T. Aleem, S. Khan: ** Conceptualization, **S. Ali, ** Writing-original draft, **S. Ali, M.T. Aleem, S. Khan: ** Formal analysis, **S. Ali, S. Khan, M.T. Aleem: ** Supervision, **M. Suleman, Z. Islam, S. Ali, A Shah, M.T. Aleem, S. Khan: ** Writing-review & editing, **S. Ali, S. Khan, M.T. Aleem, M. Suleman: ** Data curation, **A. Shah, M. Suleman, M.T. Aleem: ** Visualization, **M. Suleman, A. Shah, Z. Islam, S. Ali: ** Resources.

Corresponding authors

Correspondence to Sardar Ali or Muhammad Tahir Aleem.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S., Shah, A., Khan, S. et al. Immunoinformatics-guided design of a universal chimeric multi-epitope subunit vaccine against Marburg virus disease and Ravn virus co-infection. Sci Rep (2026). https://doi.org/10.1038/s41598-026-37178-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-026-37178-7

Keywords