Impacts of heat and noncovalent bonding on interfacial property and structure of goat milk fat globule membrane proteins

impacts-of-heat-and-noncovalent-bonding-on-interfacial-property-and-structure-of-goat-milk-fat-globule-membrane-proteins
Impacts of heat and noncovalent bonding on interfacial property and structure of goat milk fat globule membrane proteins

References

  1. Wang, Y. et al. Fractionation of milk fat globule membrane enriched materials from caprine milk cream. Int. Dairy J. 144, 105698 (2023).

    Google Scholar 

  2. Jukkola, A., Partanen, R., Xiang, W., Heino, A. & Rojas, O. J. Food emulsifiers based on milk fat globule membranes and their interactions with calcium and casein phosphoproteins. Food Hydrocoll. 94, 30–37 (2019).

    Google Scholar 

  3. Arranz, E. & Corredig, M. Invited review: Milk phospholipid vesicles, their colloidal properties, and potential as delivery vehicles for bioactive molecules. J. Dairy Sci. 100, 4213–4222 (2017).

    Google Scholar 

  4. Livney, Y. D., Ruimy, E., Ye, A. M., Zhu, X. & Singh, H. A milkfat globule membrane-inspired approach for encapsulation of emulsion oil droplets. Food Hydrocoll. 65, 121–129 (2017).

    Google Scholar 

  5. Gallier, S., Acton, D., Garg, M. & Singh, H. Natural and processed milk and oil body emulsions: bioavailability, bioaccessibility and functionality. Food Struct. 13, 13–23 (2017).

    Google Scholar 

  6. Rashidinejad, A., Birch, E. J. & Everett, D. W. Interactions between milk fat globules and green tea catechins. Food Chem. 199, 347–355 (2016).

    Google Scholar 

  7. Holzmüller, W. & Kulozik, U. Technical difficulties and future challenges in isolating membrane material from milk fat globules in industrial settings—a critical review. Int. Dairy J. 61, 51–66 (2016).

    Google Scholar 

  8. Jukkola, A. & Rojas, O. J. Milk fat globules and associated membranes: colloidal properties and processing effects. Adv. Colloid Interface Sci. 245, 92–101 (2017).

    Google Scholar 

  9. Nie, C. et al. Structure, Biological functions, separation, properties, and potential applications of milk fat globule membrane (MFGM): a review. Nutrients 16, 587 (2024).

  10. Ye, A., Singh, H., Taylor, M. W. & Anema, S. Characterization of protein components of natural and heat-treated milk fat globule membranes. Int. Dairy J. 12, 393–402 (2002).

    Google Scholar 

  11. Huang, Y. et al. Effects of various thermal treatments on interfacial composition and physical properties of bovine milk fat globules. Food Res. Int. 167, 112580 (2023).

    Google Scholar 

  12. Wiking, L., Gregersen, S. B., Hansen, S. F. & Hammershøj, M. Heat-induced changes in milk fat and milk fat globules and its derived effects on acid dairy gelation—a review. Int. Dairy J. 127, 105213 (2022).

    Google Scholar 

  13. Bermúdez-Aguirre, D., Mawson, R. & Barbosa-Cánovas, G. V. Microstructure of fat globules in whole milk after thermosonication treatment. J. Food Sci. 73, E325–E332 (2008).

    Google Scholar 

  14. Huppertz, T., Uniacke-Lowe, T. & Kelly, A. L. in Advanced Dairy Chemistry, Volume 2: Lipids (eds Paul L. H. McSweeney, Patrick F. Fox, & James A. O’Mahony) 133–167 (Springer International Publishing, 2020).

  15. Verruck, S., Dantas, A. & Prudencio, E. S. Functionality of the components from goat’s milk, recent advances for functional dairy products development and its implications on human health. J. Funct. Foods 52, 243–257 (2019).

    Google Scholar 

  16. Yan, D. et al. Changes in caprine milk fat globule membrane proteins after heat treatment using a label-free proteomics technique. Foods 11, 2705 (2022).

  17. Ma, Y., Zhang, L., Wu, Y. & Zhou, P. Changes in milk fat globule membrane proteome after pasteurization in human, bovine and caprine species. Food Chem. 279, 209–215 (2019).

    Google Scholar 

  18. Yang, L. et al. Surfactant charge tuning alters casein micelle structure and complexation behavior. Food Hydrocoll. 164, 111145 (2025).

    Google Scholar 

  19. Du, Z. et al. Study on internal structure of casein micelles in reconstituted skim milk powder. Int. J. Biol. Macromol. 224, 437–452 (2023).

    Google Scholar 

  20. Wang, C. et al. Proteomic characterization and comparison of milk fat globule membrane proteins of Saanen goat milk from 3 habitats in China using SWATH-MS technique. J. Dairy Sci. 106, 2289–2302 (2023).

    Google Scholar 

  21. Han, B., Zhang, L. & Zhou, P. Comparison of milk fat globule membrane protein profile among bovine, goat and camel milk based on label free proteomic techniques. Food Res. Int. 162, 112097 (2022).

    Google Scholar 

  22. Pisanu, S. et al. The sheep milk fat globule membrane proteome. J. Proteom. 74, 350–358 (2011).

    Google Scholar 

  23. Holzmüller, W. & Kulozik, U. Quantification of MFGM proteins in buttermilk and butter serum by means of a stain free SDS-PAGE method. J. Food Compos. Anal. 49, 102–109 (2016).

    Google Scholar 

  24. Affolter, M., Grass, L., Vanrobaeys, F., Casado, B. & Kussmann, M. Qualitative and quantitative profiling of the bovine milk fat globule membrane proteome. J. Proteom. 73, 1079–1088 (2010).

    Google Scholar 

  25. Sun, Y., Wang, C., Sun, X. & Guo, M. Comparative proteomics of whey and milk fat globule membrane proteins of Guanzhong goat and Holstein cow mature milk. J. Food Sci. 84, 244–253 (2019).

    Google Scholar 

  26. Stefferl, A. et al. Butyrophilin, a milk protein, modulates the encephalitogenic T cell response to myelin oligodendrocyte glycoprotein in experimental autoimmune encephalomyelitis. J. Immunol. 165, 2859–2865 (2000).

    Google Scholar 

  27. Fong, B. Y. & Norris, C. S. Quantification of milk fat globule membrane proteins using selected reaction monitoring mass spectrometry. J. Agric. Food Chem. 57, 6021–6028 (2009).

    Google Scholar 

  28. Pan, Y. et al. Comparative analysis of interfacial composition and structure of fat globules in human milk and infant formulas. Food Hydrocoll. 124, 107290 (2022).

    Google Scholar 

  29. Lee, S. J. & Sherbon, J. W. Chemical changes in bovine milk fat globule membrane caused by heat treatment and homogenization of whole milk. J. Dairy Res. 69, 555–567 (2002).

    Google Scholar 

  30. Cao, F. et al. Insights on the structure of caseinate particles based on surfactants-induced dissociation. Food Hydrocoll. 104, 105766 (2020).

    Google Scholar 

  31. Hu, X. et al. How much can we trust polysorbates as food protein stabilizers—the case of bovine casein. Food Hydrocoll. 96, 81–92 (2019).

    Google Scholar 

  32. Miyazawa, T., Itaya, M., Burdeos, G. C., Nakagawa, K. & Miyazawa, T. A critical review of the use of surfactant-coated nanoparticles in nanomedicine and food nanotechnology. Int. J. Nanomed. 16, 3937–3999 (2021).

    Google Scholar 

  33. Kralova, I. & Sjöblom, J. Surfactants used in food industry: a review. J. Dispers. Sci. Technol. 30, 1363–1383 (2009).

    Google Scholar 

  34. Prasad, S. et al. Near UV-Visible electronic absorption originating from charged amino acids in a monomeric protein. Chem. Sci. 8, 5416–5433 (2017).

    Google Scholar 

  35. Kuipers, B. J. H. & Gruppen, H. Prediction of molar extinction coefficients of proteins and peptides using UV absorption of the constituent amino acids at 214 nm to enable quantitative reverse phase high-performance liquid chromatography−mass spectrometry analysis. J. Agric. Food Chem. 55, 5445–5451 (2007).

    Google Scholar 

  36. Chandra Roy, M., Zhang, L., Liu, X. & Zhou, P. Investigation of caprine milk serum proteome and glycated proteome changes during heat treatment using robust ion mobility time-of-flight proteomic techniques. Int. Dairy J. 110, 104798 (2020).

    Google Scholar 

  37. Zhang, L., Zhou, R., Zhang, J. & Zhou, P. Heat-induced denaturation and bioactivity changes of whey proteins. Int. Dairy J. 123, 105175 (2021).

    Google Scholar 

  38. Anema, S. G. Heat-induced changes in caseins and casein micelles, including interactions with denatured whey proteins. Int. Dairy J. 122, 105136 (2021).

    Google Scholar 

  39. Ye, A., Singh, H., James Oldfield, D. & Anema, S. Kinetics of heat-induced association of β-lactoglobulin and α-lactalbumin with milk fat globule membrane in whole milk. Int. Dairy J. 14, 389–398 (2004).

    Google Scholar 

  40. Hansen, S. F., Nielsen, S. D., Rasmusen, J. T., Larsen, L. B. & Wiking, L. Disulfide bond formation is not crucial for the heat-induced interaction between β-lactoglobulin and milk fat globule membrane proteins. J. Dairy Sci. 103, 5874–5881 (2020).

    Google Scholar 

  41. Sun, Y., Oseliero, P. L. & Oliveira, C. L. P. alpha-Lactalbumin and sodium dodecyl sulfate aggregates: denaturation, complex formation and time stability. Food Hydrocoll. 62, 10–20 (2017).

    Google Scholar 

  42. Zhao, Y. et al. Milk fat globule membrane (MFGM) phospholipid-Whey protein interaction characterization and its effect on physicochemical, interfacial properties and evaluation of in vitro digestion of emulsions – Inspired by the MFGM. Food Hydrocoll. 155, 110173 (2024).

    Google Scholar 

  43. Ma, Q. et al. Interaction between whey protein and soy lecithin and its influence on physicochemical properties and in vitro digestibility of emulsion: A consideration for mimicking milk fat globule. Food Res. Int. 163, 112181 (2023).

    Google Scholar 

  44. Holt, C., Raynes, J. K. & Carver, J. A. Sequence characteristics responsible for protein-protein interactions in the intrinsically disordered regions of caseins, amelogenins, and small heat-shock proteins. Biopolymers 110, e23319 (2019).

    Google Scholar 

  45. Rico-Pasto, M., Zaltron, A., Davis, S. J., Frutos, S. & Ritort, F. Molten globule–like transition state of protein barnase measured with calorimetric force spectroscopy. Proc. Natl. Acad. Sci. 119, e2112382119 (2022).

    Google Scholar 

  46. Lou, K. et al. Molten globule-state protein structure: Perspectives from food processing applications. Food Res. Int. 198, 115318 (2024).

    Google Scholar 

  47. Sun, Y. et al. The role of hydrophobic interactions in the molten globule state of globular protein modulated by surfactants. Colloids Surf. B Biointerfaces 230, 113490 (2023).

    Google Scholar 

  48. Shen, Y. & Bax, A. Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology. J. Biomol. NMR 38, 289–302 (2007).

    Google Scholar 

  49. Mulder, F. A. A. & Filatov, M. NMR chemical shift data and ab initio shielding calculations: emerging tools for protein structure determination. Chem. Soc. Rev. 39, 578–590 (2010).

    Google Scholar 

  50. Wang, Y. & Jardetzky, O. Investigation of the neighboring residue effects on protein chemical shifts. J. Am. Chem. Soc. 124, 14075–14084 (2002).

    Google Scholar 

  51. Hovjecki, M., Miloradovic, Z., Rac, V., Pudja, P. & Miocinovic, J. Influence of heat treatment of goat milk on casein micelle size, rheological and textural properties of acid gels and set type yoghurts. J. Texture Stud. 51, 680–687 (2020).

    Google Scholar 

  52. Minić, D. A. P. et al. Goat milk proteins enriched with Agaricus blazei Murrill ss. Heinem extracts: electrophoretic, FTIR, DLS and microstructure characterization. Food Chem. 402, 134299 (2023).

    Google Scholar 

  53. Postelmans, A., Aernouts, B., Jordens, J., Van Gerven, T. & Saeys, W. Milk homogenization monitoring: fat globule size estimation from scattering spectra of milk. Innov. Food Sci. Emerg. Technol. 60, 102311 (2020).

    Google Scholar 

  54. Luo, J., Wang, Y., Guo, H. & Ren, F. Effects of size and stability of native fat globules on the formation of milk gel induced by rennet. J. Food Sci. 82, 670–678 (2017).

    Google Scholar 

  55. Liang, L., Zhang, X., Wang, X., Jin, Q. & McClements, D. J. Influence of dairy emulsifier type and lipid droplet size on gastrointestinal fate of model emulsions: in vitro digestion study. J. Agric. Food Chem. 66, 9761–9769 (2018).

    Google Scholar 

  56. Holzmüller, W., Gmach, O., Griebel, A. & Kulozik, U. Casein precipitation by acid and rennet coagulation of buttermilk: Impact of pH and temperature on the isolation of milk fat globule membrane proteins. Int. Dairy J. 63, 115–123 (2016).

    Google Scholar 

  57. Michalski, M.-C., Michel, F. & Geneste, C. Appearance of submicronic particles in the milk fat globule size distribution upon mechanical treatments. Le. Lait. 82, 193–208 (2002).

    Google Scholar 

  58. Corredig, M., Nair, P. K., Li, Y., Eshpari, H. & Zhao, Z. Invited review: understanding the behavior of caseins in milk concentrates. J. Dairy Sci. 102, 4772–4782 (2019).

    Google Scholar 

  59. Anema, S. G. & Li, Y. Effect of pH on the association of denatured whey proteins with casein micelles in heated reconstituted skim milk. J. Agric Food Chem. 51, 1640–1646 (2003).

    Google Scholar 

  60. Liu, Y. et al. Impact of fatty acid carbon chain length and protein composition on physicochemical and digestive properties of MFGM contained emulsions. Food Sci. Nutr. 13, e70220 (2025).

    Google Scholar 

  61. Michalski, M.-C., Michel, F., Sainmont, D. & Briard, V. Apparent ζ-potential as a tool to assess mechanical damages to the milk fat globule membrane. Colloids Surf. B Biointerfaces 23, 23–30 (2002).

    Google Scholar 

  62. Gülseren, İ, Alexander, M. & Corredig, M. Probing the colloidal properties of skim milk using acoustic and electroacoustic spectroscopy. Effect of concentration, heating and acidification. J. Colloid Interface Sci. 351, 493–500 (2010).

    Google Scholar 

  63. Sun, Y., Roos, Y. H. & Miao, S. Changes in milk fat globules and membrane proteins prepared from pH-adjusted bovine raw milk. Foods 11, 4107 (2022).

  64. Tholstrup Sejersen, M. et al. Zeta potential of pectin-stabilised casein aggregates in acidified milk drinks. Int. Dairy J. 17, 302–307 (2007).

    Google Scholar 

  65. Han, R. et al. Distribution and variation in proteins of casein micellar fractions response to heat-treatment from five dairy species. Food Chem. 365, 130640 (2021).

    Google Scholar 

  66. Binks, B. P. Particles as surfactants—similarities and differences. Curr. Opin. Colloid Interface Sci. 7, 21–41 (2002).

    Google Scholar 

  67. Silva, N. N., Bahri, A., Guyomarc’h, F., Beaucher, E. & Gaucheron, F. AFM study of casein micelles cross-linked by genipin: effects of acid pH and citrate. Dairy Sci. Technol. 95, 75–86 (2015).

    Google Scholar 

  68. Chen, M., Sagis, L. M. C. & Sun, Q. Emulsification and dilatational surface rheology of ultrasonicated milk fat globule membrane (MFGM) materials. LWT 133, 110094 (2020).

    Google Scholar 

  69. Miller, R., Aksenenko, E. V. & Fainerman, V. B. Dynamic interfacial tension of surfactant solutions. Adv. Colloid Interface Sci. 247, 115–129 (2017).

    Google Scholar 

  70. Zarif, B., Shabbir, S., Shahid, R., Noor, T. & Imran, M. Proteosomes based on milk phospholipids and proteins to enhance the stability and bioaccessibility of β-carotene. Food Chem. 429, 136841 (2023).

    Google Scholar 

  71. Qin, Y. et al. Comparative study on the microstructure and functional properties of casein in goat milk processed by different methods. Int. J. Food Sci. Technol. 56, 1682–1689 (2021).

    Google Scholar 

  72. Yue, M., Huang, M., Zhu, Z., Huang, T. & Huang, M. Effect of ultrasound assisted emulsification in the production of Pickering emulsion formulated with chitosan self-assembled particles: stability, macro, and micro rheological properties. LWT 154, 112595 (2022).

    Google Scholar 

  73. Ma, Y. et al. Structural modification of whey protein isolate via electrostatic complexation with Tremella polysaccharides and its effect on emulsion stability at pH 4.5. Int. J. Biol. Macromol. 297, 139870 (2025).

    Google Scholar 

  74. Zhao, S. et al. The stability of three different citrus oil-in-water emulsions fabricated by spontaneous emulsification. Food Chem. 269, 577–587 (2018).

    Google Scholar 

  75. Liu, J. et al. Investigation into the influence of droplet size on the stability of diesel emulsions based on multiple light scattering. J. Mol. Liq. 390, 123182 (2023).

    Google Scholar 

  76. Yu, J., Wang, X. -y, Li, D., Wang, L. -j & Wang, Y. Development of soy protein isolate emulsion gels as extrusion-based 3D food printing inks: effect of polysaccharides incorporation. Food Hydrocoll. 131, 107824 (2022).

    Google Scholar 

  77. Gräwert, T. W. & Svergun, D. I. Structural modeling using solution small-angle X-ray scattering (SAXS). J. Mol. Biol. 432, 3078–3092 (2020).

    Google Scholar 

  78. Ingham, B. et al. Revisiting the interpretation of casein micelle SAXS data. Soft Matter 12, 6937–6953 (2016).

    Google Scholar 

  79. Pedersen, J. S., Møller, T. L., Raak, N. & Corredig, M. A model on an absolute scale for the small-angle X-ray scattering from bovine casein micelles. Soft Matter 18, 8613–8625 (2022).

    Google Scholar 

  80. Chen, R. et al. Developments in small-angle X-ray scattering (SAXS) for characterizing the structure of surfactant-macromolecule interactions and their complex. Int. J. Biol. Macromol. 251, 126288 (2023).

    Google Scholar 

  81. Sun, Y. et al. Sulfate dodecyl sodium-induced stability of a model intrinsically disordered protein, bovine casein. Food Hydrocoll. 82, 19–28 (2018).

    Google Scholar 

  82. Ruiz-Peña, M., Oropesa-Nuñez, R., Pons, T., Louro, S. R. W. & Pérez-Gramatges, A. Physico-chemical studies of molecular interactions between non-ionic surfactants and bovine serum albumin. Colloids Surf. B Biointerfaces 75, 282–289 (2010).

    Google Scholar 

  83. Mustan, F. et al. Interplay between bulk aggregates, surface properties and foam stability of nonionic surfactants. Adv. Colloid Interface Sci. 302, 102618 (2022).

    Google Scholar 

  84. Ye, A., Cui, J., Dalgleish, D. & Singh, H. Effect of homogenization and heat treatment on the behavior of protein and fat globules during gastric digestion of milk. J. Dairy Sci. 100, 36–47 (2017).

    Google Scholar 

  85. Micsonai, A. et al. BeStSel: webserver for secondary structure and fold prediction for protein CD spectroscopy. Nucleic Acids Res. 50, W90–W98 (2022).

    Google Scholar 

  86. Li, Y. et al. Exploration of structure-activity relationship between IgG1 and IgE binding ability and spatial conformation in ovomucoid with pulsed electric field treatment. LWT 141, 110891 (2021).

    Google Scholar 

  87. Liu, G. et al. Upgraded SSRF BL19U2 beamline for small-angle X-ray scattering of biological macromolecules in solution. J. Appl.Crystallogr. 51, https://doi.org/10.1107/S160057671801316X (2018).

  88. Hopkins, J. B., Gillilan, R. E. & Skou, S. BioXTAS RAW: improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis. J. Appl. Crystallogr. 50, 1545–1553 (2017).

    Google Scholar 

  89. Franke, D. et al. ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. J. Appl. Crystallogr. 50, 1212–1225 (2017).

    Google Scholar 

  90. Svergun, D. I. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 76, 2879–2886 (1999).

    Google Scholar 

  91. Grant, T. D. Ab initio electron density determination directly from solution scattering data. Nat. Methods 15, 191–193 (2018).

    Google Scholar 

Download references