Implications of exogenous allantoin in enhancing growth and development of Vitis vinifera L. cultivars under semi-arid condition

implications-of-exogenous-allantoin-in-enhancing-growth-and-development-of-vitis-vinifera-l.-cultivars-under-semi-arid-condition
Implications of exogenous allantoin in enhancing growth and development of Vitis vinifera L. cultivars under semi-arid condition

References

  1. Mrabet, O., Bahlaouan, B., Antri, S. E. & Boutaleb, N. Adaptation of grape cultivars to the semi-arid climate of Saïs: the case of Sultanine for Sultana raisin production. Int. J. Environ. Stud. 82 (1), 182–200 (2025).

    Google Scholar 

  2. Somkuwar, R. G., Roshni, R. & Samarth and Ajay Kumar Sharma. Grape. In Fruit and Nut Crops 1–38. (Springer, 2023).

  3. Raisins, F., Weinbeere, G., Sp, I. U., Lavee, S. & Gil Nir. Grape. In Handbook of Fruit Set and Development 167–192. (CRC Press, 2018).

  4. Sharma, A., Kumar, R. G., Somkuwar & Roshni, R. S. Grape varieties for winemaking. In Winemaking 101–118. (CRC Press, 2021).

  5. Rouxinol, M., Inês & Ana Elisa, R. Maria Rosário Martins, João Mota Barroso, and Wine grapes ripening: A review on climate effect and analytical approach to increase wine quality. Appl. Biosci. 2 (3), 347–372. (2023).

  6. Gutiérrez-Escobar Rocío, María José Aliaño-González, and Emma Cantos-Villar. Wine polyphenol content and its influence on wine quality and properties: a review. Molecules 26 (3), 718. (2021).

  7. Kapoor, D. et al. The impact of drought in plant metabolism: how to exploit tolerance mechanisms to increase crop production. Appl. Sci. 10 (16), 5692 (2020).

    Google Scholar 

  8. Kaur, H., Chowrasia, S., Gaur, V. S. & Tapan Kumar, M. Allantoin: emerging role in plant abiotic stress tolerance. Plant. Mol. Biology Report. 39 (3), 648–661 (2021).

    Google Scholar 

  9. Raihan, M. R., Hossain, M., Rahman, A., Rastogi, M., Fujita & Mirza Hasanuzzaman Exogenous Allantoin confers rapeseed (Brassica campestris) tolerance to simulated drought by improving antioxidant metabolism and physiology. Antioxidants 12 (8), 1508 (2023).

    Google Scholar 

  10. Combescure & Hélène Catherine Pélissier. Characterization of Allantoin Transport in French Bean (Phaseolus Vulgaris (Washington State University, 2006).

  11. Izaguirre-Mayoral, M., Luisa, G., Lazarovits & Baral, B. Ureide metabolism in plant-associated bacteria: purine plant-bacteria interactive scenarios under nitrogen deficiency. Plant. Soil. 428, 1–34 (2018).

    Google Scholar 

  12. Kaur, R., Chandra, J., Varghese, B. & Keshavkant, S. Allantoin: A potential compound for the mitigation of adverse effects of abiotic stresses in plants. Plants 12 (17), 3059 (2023).

    Google Scholar 

  13. Moriyama, A., Nojiri, M., Watanabe, G., Enoki, S. & Shunji Suzuki Exogenous Allantoin improves anthocyanin accumulation in grape berry skin at early stage of ripening. J. Plant Physiol. 253, 153253 (2020).

    Google Scholar 

  14. Takagi, H. et al. Allantoin, a stress-related purine metabolite, can activate jasmonate signaling in a MYC2-regulated and abscisic acid-dependent manner. J. Exp. Bot. 67 (8), 2519–2532 (2016).

    Google Scholar 

  15. Dawood, M. F. A., Md Tahjib-Ul-Arif, Marwa, M. & Ragaey Abdullah Al Mamun Sohag, Arafat Abdel Hamed Abdel Latef. Mechanistic insight of allantoin in protecting tomato plants against ultraviolet C stress. Plants 10 (1), 11. (2020).

  16. Arnon, D. I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant. Physiol. 24 (1), 1–15 (1949).

    Google Scholar 

  17. Schlegel, H. G. Die verwertung organischer Säuren durch chlorella Im licht. Planta 47 (5), 510–526 (1956).

    Google Scholar 

  18. Singleton, V. L. & Joseph, A. R. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 16 (3), 144–158 (1965).

    Google Scholar 

  19. Mazza, G., Juan, E., Cacace & Colin, D. K. Methods of analysis for anthocyanins in plants and biological fluids. J. AOAC Int. 87 (1), 129–145 (2019).

    Google Scholar 

  20. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 (1–2), 248–254 (1976).

    Google Scholar 

  21. Bates, L., S, R. P. A., Waldren & Teare, I. D. Rapid determination of free proline for water-stress studies. Plant. Soil. 39, 205–207 (1973).

    Google Scholar 

  22. Heath, R. L. & Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125 (1), 189–198 (1968).

    Google Scholar 

  23. Cavallini, E., Matus, J. T., Finezzo, L., Zenoni, S., Loyola, R., Guzzo, F., … Tornielli,G. B. The phenylpropanoid pathway is controlled at different branches by a set of R2R3-MYB C2 repressors in grapevine. Plant Physiol. 167 (4), 1448–1470. (2015).

  24. Ntanasi, T. et al. Leo Sabatino, Dimitrios Savvas, and Georgia Ntatsi. Plant biostimulants enhance tomato resilience to salinity stress: insights from two Greek landraces. Plants 13 (10), 1404. (2024).

  25. Katam, R. et al. Advances in plant metabolomics and its applications in stress and single-cell biology. Int. J. Mol. Sci. 23 (13), 6985 (2022).

    Google Scholar 

  26. Yu, X. R. et al. Effects of spraying Allantoin at different stages on inorganic nitrogen assimilation, endogenous hormones, yield, and quality of sugar beet in saline-alkali land. Sugar Tech. 1–14. (2024).

  27. Fahad, S. et al. Suppressing photorespiration for the improvement in photosynthesis and crop yields: A review on the role of S-allantoin as a nitrogen source. J. Environ. Manage. 237, 644–651 (2019).

    Google Scholar 

  28. Malik, A. et al. Saurabh Tomar, Pradeep Singh, and nirmal Singh. Biostimulant-treated seedlings under sustainable agriculture: A global perspective facing climate change. Agronomy 11 (1), 14. (2020).

  29. Ali, M., Ahmed, M. M., Harhash, S. S., Bassiony & Mohamed Mahmoud Saad Felifal. Effect of foliar spray of sitofex, Moringa leaves extract and some nutrients on productivity and fruit quality of Thompson seedless grapevine. J. Adv. Agricultural Researches. 25 (1), 112–129 (2020).

    Google Scholar 

  30. Johnson, R., Joel, J. M. & Jos, T. P. Biostimulants: the futuristic sustainable approach for alleviating crop productivity and abiotic stress tolerance. J. Plant Growth Regul. 43 (3), 659–674 (2024).

    Google Scholar 

  31. Lu, S. et al. Combined metabolomic and transcriptomic analysis reveals Allantoin enhances drought tolerance in rice. Int. J. Mol. Sci. 23 (22), 14172 (2022).

    Google Scholar 

  32. Sabir, A., Bakir, M. S. & Ferhan, K. S. Mitigating the water deficit stress of grapevines by seaweed extract (Ascophyllum nodosum L.) pulverization in soilless culture under controlled glasshouse condition. Appl. Fruit Sci. 67 (3), 1–9 (2025).

    Google Scholar 

  33. Soppelsa, S. et al. Foliar applications of biostimulants promote growth, yield and fruit quality of strawberry plants grown under nutrient limitation. Agronomy 9 (9), 483 (2019).

    Google Scholar 

  34. Takagi, H. et al. Allantoin, a stress-related purine metabolite, can activate jasmonate signalling in a MYC2-regulated and abscisic acid-dependent manner. J. Exp. Bot. 67 (8), 2519–2532 (2016).

    Google Scholar 

  35. Kopecká, R., Kameniarová, M., Brzobohatý, M. & Novák, J. Abiotic stress in crop production. Int. J. Mol. Sci. 24 (7), 6603. (2023).

  36. Boscaro, R. et al. Effects of Foliar-Applied mixed mineral fertilizers and organic biostimulants on the growth and hybrid seed production of a Male-Sterile inbred maize line. Plants 12 (15), 2837 (2023).

    Google Scholar 

  37. Domingues Neto, F. et al. Carmen Silvia Fernandes Boaro, Elizabeth Orika Ono, João Domingos Rodrigues, and Marco Antonio Tecchio. Photosynthesis, biochemical and yield performance of grapevine hybrids in two rootstock and trellis height. Horticulturae 9 (5), 596. (2023).

  38. Baltazar, M. et al. Recent advances in the molecular effects of biostimulants in plants: an overview. Biomolecules 11 (8), 1096 (2021).

    Google Scholar 

  39. Watanabe, S. et al. The purine metabolite Allantoin enhances abiotic stress tolerance through synergistic activation of abscisic acid metabolism. Plant. Cell. Environ. 37 (4), 1022–1036 (2014).

    Google Scholar 

  40. Bakibaev, A. A. et al. Allantoin: synthesis and chemical properties. Вестник Карагандинского университета Серия: Химия (1), 7–21. (2020).

  41. Tuladhar, P., Sasidharan, S. & Saudagar, P. Role of phenols and polyphenols in plant defense response to biotic and abiotic stresses. In Biocontrol Agents and Secondary Metabolites 419–441. (Elsevier, 2021).

  42. Ferrandino, A. & Claudio Lovisolo Abiotic stress effects on grapevine (Vitis vinifera L.): focus on abscisic acid-mediated consequences on secondary metabolism and berry quality. Environ. Exp. Bot. 103, 138–147 (2014).

    Google Scholar 

  43. Bueno, J., Martín, R., Fett & Agustin, G. A. Analysis and antioxidant capacity of anthocyanin pigments. Part II: Chemical structure, color, and intake of anthocyanins. Crit. Rev. Anal. Chem. 42 (2), 126–151. (2012).

  44. Lescano, C., Ignacio, C., Martini, C. A., González & Marcelo Desimone Allantoin accumulation mediated by Allantoinase downregulation and transport by Ureide permease 5 confers salt stress tolerance to Arabidopsis plants. Plant Mol. Biol. 91, 581–595 (2016).

    Google Scholar 

  45. Zulfiqar, F. & Muhammad Ashraf Proline alleviates abiotic stress induced oxidative stress in plants. J. Plant Growth Regul. 42 (8), 4629–4651 (2023).

    Google Scholar 

  46. Jadoon, S. & Malik, A. A review Article on the formation, mechanism and biochemistry of MDA and MDA as a biomarker of oxidative stress. Int. J. Adv. Res. 5, 811–818 (2017).

    Google Scholar 

Download references