References
-
Tavakoli, H. Z., Abdollahy, M., Ahmadi, S. & Darban, A. K. Kinetics of uranium bioleaching in stirred and column reactors. Miner. Eng. 111, 36–46 (2017).
-
Kaksonen, A. H., Lakaniemi, A.-M. & Tuovinen, O. H. Acid and ferric sulfate bioleaching of uranium ores: A review. J. Clean. Prod. 264, 121586 (2020).
-
Pradhan, N., Nathsarma, K., Rao, K. S., Sukla, L. & Mishra, B. Heap bioleaching of chalcopyrite: A review. Miner. Eng. 21(5), 355–365 (2008).
-
Chen, W., Tang, H. & Yin, S. Bioleaching of low-grade copper sulfide enhanced by nutrients from sterilized medical waste. Process Saf. Environ. Protect. 188, 1527–1535 (2024).
-
Nagpal, S., Dahlstrom, D. & Oolman, T. Effect of carbon dioxide concentration on the bioleaching of a pyrite–arsenopyrite ore concentrate. Biotechnol. Bioeng. 41(4), 459–464 (1993).
-
Barron, J. L. & Lueking, D. R. Growth and maintenance of Thiobacillus ferrooxidans cells. Appl. Environ. Microbiol. 56(9), 2801–2806 (1990).
-
Schippers, A., Hetz, S. A. & Ostertag-Henning, C. Laterite ore processing with hydrogen via mild chemical pressure leaching or bioleaching. Hydrometallurgy https://doi.org/10.1016/j.hydromet.2025.106447 (2025).
-
Khetwunchai, N. et al. Enhanced bioleaching of copper and gold from waste printed circuit boards: Stepwise process, pretreatment strategies, metabolomics analysis, and the role of N8-acetylspermidine. Process Saf. Environ. Protect. 194, 289–305 (2025).
-
Dew, D. W., Lawson, F. & Broadhurst, J. L. The bioleaching of sulfide minerals with emphasis on copper sulfides a review. Hydrometallurgy 47, 155–170 (1997).
-
Rea, S. et al. Salt-tolerant microorganisms potentially useful for bioleaching operations where fresh water is scarce. Miner. Eng. 75, 126–132 (2015).
-
Simmons, S. F. & Norris, P. R. Acidophilic microorganisms and their interactions with minerals in saline environments. Extremophiles 6(6), 551–559 (2002).
-
Noguchi, H. & Okibe, N. The role of bioleaching microorganisms in saline water leaching of chalcopyrite concentrate. Hydrometallurgy 195, 105397 (2020).
-
Shivanand, P. & Mugeraya, G. Halophilic microorganisms and their adaptation mechanisms. Crit. Rev. Microbiol. 37(4), 315–334 (2011).
-
Oren, A. Life at high salt concentrations, intracellular KCl concentrations, and acidic proteomes. Front. Microbiol. 4, 315 (2013).
-
Graziano, G. & Merlino, A. Molecular bases of protein halotolerance. Biochimica et Biophysica Acta (BBA) 1844(4), 850–858 (2014).
-
Fournier, D., Lemieux, R. & Couillard, D. Essential interactions between Thiobacillus ferrooxidans and heterotrophic microorganisms during a wastewater sludge bioleaching process. Environ. Pollut. 101(2), 303–309 (1998).
-
Gu, X.-Y. & Wong, J. W. Degradation of inhibitory substances by heterotrophic microorganisms during bioleaching of heavy metals from anaerobically digested sewage sludge. Chemosphere 69(2), 311–318 (2007).
-
Zheng, G., Zhou, L. & Wang, S. An acid-tolerant heterotrophic microorganism role in improving tannery sludge bioleaching conducted in successive multibatch reaction systems. Environ. Sci. Technol. 43(11), 4151–4156 (2009).
-
Tavakoli, H. Z., Abdollahy, M., Ahmadi, S. & Darban, A. K. Enhancing recovery of uranium column bioleaching by process optimization and kinetic modeling. Trans. Nonferrous Met. Soc. China 27(12), 2691–2703 (2017).
-
Bomberg, M., Mäkinen, J., Salo, M. & Kinnunen, P. High diversity in iron cycling microbial communities in acidic, iron‐rich water of the Pyhäsalmi Mine, Finland. Geofluids 2019(1), 7401304 (2019).
-
Piroeva, I. et al. A simple and rapid scanning electron microscope preparative technique for observation of biological samples: application on bacteria and DNA samples. Bulg. Chem. Commun 45(4), 510–515 (2013).
-
Csonka, L. N. Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev. 53(1), 121–147 (1989).
-
Kieft, T. L. & Spence, S. D. Osmoregulation in Thiobacillus ferrooxidans: Stimulation of iron oxidation by proline and betaine under salt stress. Curr. Microbiol. 17, 255–258 (1988).
-
Guo, X. et al. Role of proline biosynthesis in Acidithiobacillus caldus under salt stress. J. Bacteriol. 195, 4421–4429 (2013).
-
Zammit, C. M. et al. Bioleaching in brackish waters—effect of chloride ions on the acidophile population and proteomes of model species. Appl. Microbiol. Biotechnol. 93, 319–329 (2012).
-
Simmons, S. & Norris, P. Acidophiles of saline water at thermal vents of Vulcano, Italy. Extremophiles 6, 201–207 (2002).
-
Sand, W. et al. Microbial mechanisms for metal leaching in acidic environments. Hydrometallurgy 59(3), 159 (2001).
-
Zheng, X. & Li, D. Interaction of Acidithiobacillus ferrooxidans, Rhizobium phaseoli and Rhodotorula sp. in bioleaching process based on Lotka-Volterra model. Electron. J. Biotechnol. 22, 90–97 (2016).
-
Ingledew, W. J. Thiobacillus ferrooxidans the bioenergetics of an acidophilic chemolithotroph. Biochimica et Biophysica Acta (BBA) 683(2), 89–117 (1982).
-
Salinas, E. et al. Removal of cadmium and lead from dilute aqueous solutions by Rhodotorula rubra. Bioresour. Technol. 72(2), 107–112 (2000).
