References
-
Bahr, J. M. in Sourcebook of Models for Biomedical Research (ed P. Michael Conn) 161–167Humana Press, (2008).
-
Beacon, T. H. & Davie, J. R. The chicken model organism for epigenomic research. Genome 64, 476–489. https://doi.org/10.1139/gen-2020-0129 (2021).
-
Kaplan-Arabaci, O., Dančišinová, Z. & Paulsen, R. E. The Chicken Embryo: An Alternative Animal Model in Development and Disease. Heliyon (2024). https://doi.org/10.2139/ssrn.4724622
-
Burt, D. W. Emergence of the chicken as a model organism: implications for agriculture and biology. Poult. Sci. 86, 1460–1471. https://doi.org/10.1093/ps/86.7.1460 (2007).
-
Stern, C. D. The chick; a great model system becomes even greater. Dev. Cell. 8, 9–17. https://doi.org/10.1016/j.devcel.2004.11.018 (2005).
-
Sarnella, A. et al. The Chicken Embryo: An Old but Promising Model for In Vivo Preclinical Research. Biomedicines 12 (2024). https://doi.org/10.3390/biomedicines12122835
-
Davey, M. G. & Tickle, C. The chicken as a model for embryonic development. Cytogenet. Genome Res. 117, 231–239. https://doi.org/10.1159/000103184 (2007).
-
Gruber, F. P. & Hartung, T. Alternatives to animal experimentation in basic research. ALTEX (2004).
-
Davey, M. G. M., Mike, J., Holmes & Tana A Scientific Case for Revisiting the Embryonic Chicken Model in Biomedical Research. SSRN (2024). https://doi.org/10.2139/ssrn.5012603
-
Weiss, L. et al. Nocicepton in chicken embryos, Part I: Analysis of cardiovascular responses to a mechanical noxious stimulus. Anim. (Basel). 13. https://doi.org/10.1101/2023.04.14.536899 (2023).
-
Kollmansperger, S. et al. Nociception in chicken embryos, Part II: Embryonal development of electroencephalic neuronal activity in ovo as a prerequisite for nociception. bioRxiv https://doi.org/10.1101/2023.04.14.536947 (2023).
-
Süß, S. C. et al. Nociception in chicken embryos, Part III: Analysis of movements before and after application of a noxious stimulus. Animals 13 https://doi.org/10.1101/2023.04.20.537674 (2023).
-
Bruijnis, M. R. N., Blok, V., Stassen, E. N. & Gremmen, H. G. J. Moral Lock-In in Responsible Innovation: The Ethical and Social Aspects of Killing Day-Old Chicks and Its Alternatives. J. Agric. Environ. Ethics. 28, 939–960. https://doi.org/10.1007/s10806-015-9566-7 (2015).
-
Corion, M. et al. Trends in in ovo sexing technologies: insights and interpretation from papers and patents. J. Anim. Sci. Biotechnol. 14, 102. https://doi.org/10.1186/s40104-023-00898-1 (2023).
-
Xu, S. et al. Egg characteristics assessment as an enabler for in-ovo sexing technology: A review. Biosyst. Eng. 249, 41–57. https://doi.org/10.1016/j.biosystemseng.2024.11.008 (2025).
-
Di Concetto, A., Morice, O. & Corion, M. & Monteiro Belo dos Santos, S. Chick and Duckling Killing: Achieving an EU-Wide Prohibition (European Institute for Animal Law & Policy, 2023).
-
Code rurale de la pêche maritime; Partie réglemetaire. Journal officiel de la République française, Livre, I. I. & Chapitre, I. V. Section 2, Sous-Sect. 1, R214-217 (2022).
-
Code rurale de la pêche maritime; Partie réglementaire Journal officiel de la République française, Livre, I. I. & Chapitre, I. V. Section 4, Sous-Sect. 3, R214-278 (modifié par Décret n°2022-2137-Art.2021) (2022).
-
Animals (Scientific Procedures) Act. London Gazette, c. 14 (2013). (1986).
-
(German Animal Welfare Act & Tierschutzgesetz ). BGBl. I, S 1826, § 4c (2021).
-
Animal Welfare Regulation Governing Experimental Animals (TierSchVerV). BGBl. I S. 1308, Sect. 2, § 14. (2024).
-
Bacon, L. D., Hunt, H. D. & Cheng, H. H. A review of the development of chicken lines to resolve genes determining resistance to diseases. Poult. Sci. 79, 1082–1093. https://doi.org/10.1093/ps/79.8.1082 (2000).
-
Ballantyne, M. et al. Direct allele introgression into pure chicken breeds using Sire Dam Surrogate (SDS) mating. Nat. Commun. 12, 659. https://doi.org/10.1038/s41467-020-20812-x (2021).
-
Lengyel, K. et al. Unveiling the critical role of androgen receptor signaling in avian sexual development. Nat. Commun. 15, 8970. https://doi.org/10.1038/s41467-024-52989-w (2024).
-
Jansen, S. et al. Relationship between Bone Stability and Egg Production in Genetically Divergent Chicken Layer Lines. Anim. (Basel). 10. https://doi.org/10.3390/ani10050850 (2020).
-
Henderson, L., Okuzaki, Y., Marcelle, C., McGrew, M. J. & Nishijima, K. I. Avian bioresources for developmental biology: Chicken and quail resources in the United Kingdom, France, and Japan. Dev. Biol. 521, 1–13. https://doi.org/10.1016/j.ydbio.2025.02.001 (2025).
-
Milchevskaya, V. et al. Group size planning for breedings of gene-modified mice and other organisms following Mendelian inheritance. Lab. Anim. (NY). 52, 183–188. https://doi.org/10.1038/s41684-023-01213-1 (2023).
-
Buch, T. et al. Reducing surplus experimental animal generation. Lab. Anim. 56, 305–305. https://doi.org/10.1177/00236772221096054 (2022).
-
Wewetzer, H., Wagenknecht, T., Bert, B. & Schonfelder, G. The fate of surplus laboratory animals: Minimizing the production of surplus animals has greatest potential to reduce the number of laboratory animals. EMBO Rep. 24, e56551. https://doi.org/10.15252/embr.202256551 (2023).
-
Morinha, F. et al. High-resolution melting analysis for bird sexing: a successful approach to molecular sex identification using different biological samples. Mol. Ecol. Resour. 13, 473–483. https://doi.org/10.1111/1755-0998.12081 (2013).
-
Cordeiro, C. D. et al. Fast, accurate, and cost-effective poultry sex genotyping using real-time polymerase chain reaction. Front. Vet. Sci. 10, 1196755. https://doi.org/10.3389/fvets.2023.1196755 (2023).
-
He, L. et al. Simple, sensitive and robust chicken specific sexing assays, compliant with large scale analysis. PLoS One. 14, e0213033. https://doi.org/10.1371/journal.pone.0213033 (2019).
-
Rosenthal, N. F. et al. High-throughput applicable genomic sex typing of chicken by TaqMan real-time quantitative polymerase chain reaction. Poult. Sci. 89, 1451–1456. https://doi.org/10.3382/ps.2010-00638 (2010).
-
Clinton, M., Haines, L., Belloir, B. & McBride, D. Sexing chick embryos: a rapid and simple protocol. Br. Poult. Sci. 42, 134–138. https://doi.org/10.1080/713655025 (2001).
-
Jensen, T., Mace, M. & Durrant, B. Sexing of mid-incubation avian embryos as a management tool for zoological breeding programs. Zoo Biol. 31, 694–704. https://doi.org/10.1002/zoo.20433 (2012).
-
V.D. Hofstadt, M. et al. Molecular sexing of chick embryos by LAMP and RPA assays: a step toward in ovo egg sexing. PREPRINT (Version 1) available Res. Square. https://doi.org/10.21203/rs.3.rs-5772672/v1 (2025).
-
Weissmann, A., Reitemeier, S., Hahn, A., Gottschalk, J. & Einspanier, A. Sexing domestic chicken before hatch: a new method for in ovo gender identification. Theriogenology 80, 199–205. https://doi.org/10.1016/j.theriogenology.2013.04.014 (2013).
-
Weissmann, A. et al. In ovo-gender identification in laying hen hybrids: Effects on hatching and production performance. Europ Poult. Sci. https://doi.org/10.1399/eps.2014.25 (2014).
-
Turkyilmaz, M. K., Karagenc, L. & Fidan, E. Sexing of newly-hatched chicks using DNA isolated from chorio-allantoic membrane samples by polymerase chain reaction in Denizli chicken. Br. Poult. Sci. 51, 525–529. https://doi.org/10.1080/00071668.2010.502521 (2010).
-
Seleggt.
https://www.seleggt.com/ -
PLANTegg. Accessed October 28, (2025). https://www.plantegg.de/
-
Monteiro Belo Santos, S., Corion, M., De Ketelaere, B., Lammertyn, J. & Spasic, D. Allantoic Fluid-Based qPCR for Early Onset In Ovo Sexing. J. Agric. Food Chem. https://doi.org/10.1021/acs.jafc.3c09418 (2024).
-
Respeggt. Accessed October 28, (2025).
-
Jia, N. et al. A Review of Key Techniques for in Ovo Sexing of Chicken Eggs. Agriculture 13 https://doi.org/10.3390/agriculture13030677 (2023).
-
Xie, C., Tang, W. & Yang, C. A review of the recent advances for the in ovo sexing of chicken embryos using optical sensing techniques. Poult. Sci. 102, 102906. https://doi.org/10.1016/j.psj.2023.102906 (2023).
-
Woodcock, M. E. et al. Reviving rare chicken breeds using genetically engineered sterility in surrogate host birds. Proc. Natl. Acad. Sci. U. S. A. 116, 20930–20937 (2019). https://doi.org/10.1073/pnas.1906316116
-
Panda, S. K. & McGrew, M. J. Genome editing of avian species: implications for animal use and welfare. Lab. Anim. 56, 50–59. https://doi.org/10.1177/0023677221998400 (2022).
-
Percie du Sert. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18, e3000411. https://doi.org/10.1371/journal.pbio.3000411 (2020).
-
Percie du Sert. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 18, e3000410. https://doi.org/10.1371/journal.pbio.3000410 (2020).
-
Mangir, N., Dikici, S., Claeyssens, F. & MacNeil, S. Using ex Ovo Chick Chorioallantoic Membrane (CAM) Assay To Evaluate the Biocompatibility and Angiogenic Response to Biomaterials. ACS Biomater. Sci. Eng. 5, 3190–3200. https://doi.org/10.1021/acsbiomaterials.9b00172 (2019).
-
Cloney, K. & Franz-Odendaal, T. A. Optimized ex-ovo culturing of chick embryos to advanced stages of development. J. Vis. Exp. 52129 https://doi.org/10.3791/52129 (2015).
-
Hamburger & Hamilton A series of normal stages in the development of the chick embryo. J Morphol 88(1): 49–92. (1951).
-
Hosono, S. et al. Unbiased whole-genome amplification directly from clinical samples. Genome Res. 13, 954–964. https://doi.org/10.1101/gr.816903 (2003).
-
Dean, F. B. et al. Comprehensive human genome amplification using multiple displacement amplification. Proceedings of the National Academy of Sciences 99, 5261–5266 (2002). https://doi.org/10.1073/pnas.082089499
-
Suriyaphol, G., Kunnasut, N., Sirisawadi, S., Wanasawaeng, W. & Dhitavat, S. Evaluation of dried blood spot collection paper blotters for avian sexing by direct PCR. Br. Poult. Sci. 55, 321–328. https://doi.org/10.1080/00071668.2014.925087 (2014).
-
Bailes, S. M., Devers, J. J., Kirby, J. D. & Rhoads, D. D. An Inexpensive, Simple Protocol for DNA Isolation from Blood for High-Throughput Genotyping by Polymerase Chain Reaction or Restriction Endonuclease Digestion. Poult. Sci. 86, 102–106. https://doi.org/10.1093/ps/86.1.102 (2007).
-
Dierks, C., Altgilbers, S., Weigend, A., Preisinger, R. & Weigend, S. Sexing assay for chickens and other birds for large-scale application based on a conserved sequence variant in CHD1 genes on W and Z chromosomes. Anim. Genet. 53, 235–237. https://doi.org/10.1111/age.13176 (2022).
-
Fridolfsson, A. K. & Ellegren, H. A simple and universal method for molecular sexing of non-ratite birds. J. Avian Biol. 30, 116–121 (1999).
-
Wragg, D. et al. Endogenous retrovirus EAV-HP linked to blue egg phenotype in Mapuche fowl. PLoS One. 8, e71393. https://doi.org/10.1371/journal.pone.0071393 (2013).
-
Altgilbers, S., Dierks, C., Klein, S., Weigend, S. & Kues, W. A. Quantitative analysis of CRISPR/Cas9-mediated provirus deletion in blue egg layer chicken PGCs by digital PCR. Sci. Rep. 12, 15587. https://doi.org/10.1038/s41598-022-19861-7 (2022).
-
Tona, K. et al. Effects of egg storage time on spread of hatch, chick quality, and chick juvenile growth. Poult. Sci. 82, 736–741. https://doi.org/10.1093/ps/82.5.736 (2003).
-
Boerjan, M. L. in Avian and Poultry Biology Reviews.4 edn 237–238.
-
Chen, L. et al. Dynamic 3D morphology of chick embryos and allantois depicted nondestructively by 3.0T clinical magnetic resonance imaging. Poult. Sci. 102, 102902. https://doi.org/10.1016/j.psj.2023.102902 (2023).
-
Baggott, G. K. Development of Extra-embryonic Membranes and Fluid Compartments. Avian Biol. Res. 2, 21–26 (2009).
-
Simkiss, K. Water and Ionic Fluxes inside the Egg. Am. Zool. 20, 385–393 (1980).
-
Everaert, N., Willemsen, H., Willems, E., Franssens, L. & Decuypere, E. Acid-base regulation during embryonic development in amniotes, with particular reference to birds. Respir Physiol. Neurobiol. 178, 118–128. https://doi.org/10.1016/j.resp.2011.04.023 (2011).
-
Rideout, B. A. Investigating embryo deaths and hatching failure. Vet. Clin. North. Am. Exot Anim. Pract. 15, 155–162. https://doi.org/10.1016/j.cvex.2012.02.005 (2012).
-
Romanoff, A. L. Critical Periods and Causes of Death in Avian Embryonic Development. Auk 66, 264–270. https://doi.org/10.2307/4080357 (1949).
-
Martinez-Rodero, I. et al. Blastocoel fluid aspiration improves vitrification outcomes and produces similar sexing results of in vitro-produced cattle embryos compared to microblade biopsy. Theriogenology 218, 142–152. https://doi.org/10.1016/j.theriogenology.2024.01.042 (2024).
-
Powers, L. & Huntersville, N. (2021).
-
Zendehboudi, M. & Vesal, N. Comparison of cardiopulmonary effects of propofol, ketamine-propofol and isoflurane anesthesia in the domestic chicken (Gallus gallus domesticus). Vet. Anaesth. Analg. 51, 449–457. https://doi.org/10.1016/j.vaa.2024.06.005 (2024).
-
Horr, M., Sommerfeld, S., Silva, M. V. & Fonseca, B. B. A fast and simple protocol to anaesthesia in chicken embryos. Exp. Anim. 72, 294–301. https://doi.org/10.1538/expanim.22-0133 (2023).
-
Zumbrink, L., Brenig, B., Foerster, A., Hurlin, J. & Wenzlawowicz, M. v. Electrical anaesthesia of male chicken embryos in the second third of the incubation period in compliance with animal welfare. Eur. Poult. Sci. 84, 1–11. https://doi.org/10.1399/eps.2020.315 (2020).
-
Aleksandrowicz, E. & Herr, I. Ethical euthanasia and short-term anesthesia of the chick embryo. ALTEX 32, 143–147. https://doi.org/10.14573/altex.1410031 (2015).
-
Hatt, J. M., Kreyenbuhl, K. & Kummrow, M. [Methods of analgesia and euthanasia in backyard poultry]. Schweiz. Arch. Tierheilkd. 165, 503–511. https://doi.org/10.17236/sat00398 (2023).
-
Schlegel, L., Kleine, A. S., Doherr, M. G. & Fischer-Tenhagen, C. How to see stress in chickens: On the way to a Stressed Chicken Scale. Poult. Sci. 103, 103875. https://doi.org/10.1016/j.psj.2024.103875 (2024).
-
Dierks, C., Simianer, N. T. H. H., Cavero, D. & Preisinger, R. S. Weigend. in 70th Annual Meeting of the European Federation of Animal Science, 26–30 August. (ed Scientific Committee). (ed Scientific Committee). (2019).
-
Dierks, C., Simianer, N. T. H. H., Andersson, B., Cavero, D. & Preisinger, R. S. Weigend. in XI European Symposium on Poultry Genetics, 23–25 October 2019. (ed S. Weigend P. Trefil).
