Omoruyi, P. O. et al. Borealpox virus: A comprehensive review of its emergence and global recommendations. J. Health Sci. Med. Res. 43(2), 20241092 (2025).
Bishnoi, A. et al. Understanding Borealpox virus: an update for clinicians following the first mortality. Int. J. Dermatol. 63(10), e271–e273 (2024).
Nikitin, V. N., Merkuleva, I. A. & Shcherbakov, D. N. Monoclonal antibodies in light of Mpox outbreak: Current research, therapeutic targets, and animal models. Antibodies 14(1), 20 (2025).
Mooring, E. Q. et al. Six cases of borealpox and evidence of a zoonotic source—Alaska, 2020–2023. Clin. Infect. Dis. ciaf497 (2025).
Rogers, J. H. et al. Fatal borealpox in an immunosuppressed patient treated with antivirals and vaccinia immunoglobulin-Alaska, 2023. Clin Infect Dis 80(5), 1053–1059 (2025).
Douglass, N. Borealpox (Alaskapox) virus: will there be more emerging zoonotic orthopoxviruses? Lancet Microbe. 5(8), 100883 (2024).
Do, T. N. D. et al. The triple combination of Remdesivir (GS-441524), Molnupiravir and Ribavirin is highly efficient in inhibiting coronavirus replication in human nasal airway epithelial cell cultures and in a hamster infection model. Antiviral Res. 231, 105994 (2024).
Hanafy, A. S. & Abd-Elsalam, S. Challenges in COVID-19 drug treatment in patients with advanced liver diseases: A hepatology perspective. World J. Gastroenterol. 26(46), 7272 (2020).
Thomas, S. Plotting the major proteins of borealpox virus. Front. Virol. 4, 1451810 (2024).
Šantak, M. & Matić, Z. The role of nucleoprotein in immunity to human negative-stranded RNA viruses—not just another brick in the viral nucleocapsid. Viruses 14(3), 521 (2022).
Mortazavi, B., Molaei, A. & Fard, N. A. Multi-epitopevaccines, from design to expression; an in silico approach. Hum. Immunol. 85(3), 110804 (2024).
Wei, Y. et al. Advances of computational methods enhance the development of multi-epitope vaccines. Brief. Bioinform. 26(1), bbaf055 (2025).
Shawan, M. M. A. K. et al. Advances in computational and bioinformatics tools and databases for designing and developing a multi-epitope-based peptide vaccine. Int. J. Pept. Res. Ther. 29(4), 60 (2023).
Gomase, V. S., Sharma, R. & Dhamane, S. P. Immunoinformatics approach for optimization of targeted vaccine design: new paradigm in clinical trials and healthcare management. Rev. Recent Clin. Trials (2025).
Basmenj, E. R. et al. Computational epitope-based vaccine design with bioinformatics approach; a review. Heliyon 11(1) (2025).
Anderson, L. N. et al. Computational tools and data integration to accelerate vaccine development: Challenges, opportunities, and future directions. Front. Immunol. 16, 1502484 (2025).
UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic. Acids Res. 47(D1), D506–D515 (2019).
Doytchinova, I. A. & Flower, D. R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics 8(1), 4 (2007).
Dimitrov, I. et al. AllerTOP v.2—a server for in silico prediction of allergens. J. Mol. Model. 20(6), 2278 (2014).
Krogh, A. et al. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305(3), 567–580 (2001).
Reynisson, B. et al. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic. Acids Res. 48(W1), W449–W454 (2020).
Naveed, M. et al. Rational computational design and development of an immunogenic multiepitope vaccine incorporating transmembrane proteins of Fusobacterium necrophorum. Sci. Rep. 15(1), 15587 (2025).
Bui, H.-H. et al. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinform. 7(1), 153 (2006).
Srivastava, S. et al. Structural basis of development of multi-epitope vaccine against Middle East respiratory syndrome using in silico approach. Infect. Drug Resist. 11, 2377–2391 (2018).
Guryanova, S. V. & Ovchinnikova, T. V. Immunomodulatory and allergenic properties of antimicrobial peptides. Int. J. Mol. Sci. 23(5), 2499 (2022).
Solanki, S. S. et al. Promising role of defensins peptides as therapeutics to combat against viral infection. Microb. Pathog. 155, 104930 (2021).
Idrees, M. et al. Core-proteomics-based annotation of antigenic targets and reverse-vaccinology-assisted design of ensemble immunogen against the emerging nosocomial infection-causing bacterium Elizabethkingia meningoseptica. Int. J. Environ. Res. Public Health 19(1), 194 (2021).
Kumar, K. M. et al. Immunoinformatic exploration of a multi-epitope-based peptide vaccine candidate targeting emerging variants of SARS-CoV-2. Front. Microbiol. 14, 1251716 (2023).
Gasteiger, E. et al. Protein identification and analysis tools on the ExPASy server. In The proteomics protocols handbook 571–607 (Springer, 2005).
Hanif, N. et al. In silico characterization of hypothetical protein AZJ53_10480 in Streptococcus pneumoniae. BioSci. Rev. 6(4), 1–12 (2024).
Hon, J. et al. SoluProt: prediction of soluble protein expression in Escherichia coli. Bioinformatics 37(1), 23–28 (2021).
Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630(8016), 493–500 (2024).
Colovos, C. & Yeates, T. O. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2(9), 1511–1519 (1993).
Hanif, N. et al. Computational drug design targeting MYH7 for hypertrophic cardiomyopathy integrating molecular docking, density functional theory, and molecular dynamics simulations. J. Appl. Biol. Sci. 19(3), 179–192 (2025).
Ponomarenko, J. et al. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinform. 9(1), 514 (2008).
Naveed, M. et al. Development of a broad-spectrum multiepitope vaccine against dabie bandavirus through immunoinformatic approaches. Int. Immunopharmacol. 166, 115492 (2025).
Yan, Y. et al. The HDOCK server for integrated protein–protein docking. Nat. Protoc. 15(5), 1829–1852 (2020).
Kozakov, D. et al. The ClusPro web server for protein–protein docking. Nat. Protoc. 12(2), 255–278 (2017).
Laskowski, R. A. et al. PDBsum: Structural summaries of PDB entries. Protein Sci. 27(1), 129–134 (2018).
Naveed, M. et al. Designing IL-24-P18 fusion protein through computational engineering for targeted breast cancer therapy. J. Comput. Biophys. Chem. 25(01), 109–123 (2025).
Xue, L. C. et al. PRODIGY: a web server for predicting the binding affinity of protein–protein complexes. Bioinformatics 32(23), 3676–3678 (2016).
Case, D. A. et al. The Amber biomolecular simulation programs. J. Comput. Chem. 26(16), 1668–1688 (2005).
Mark, P. & Nilsson, L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A 105(43), 9954–9960 (2001).
Naveed, M. et al. Combining network pharmacology and computational approaches for screening of Apiaceae-derived phytochemicals as inhibitors of DNA polymerase III in Streptococcus pyogenes causing streptococcal toxic shock syndrome. Chin. J. Anal. Chem. 100632 (2025).
Sadia, H. et al. Natural AI-based drug designing by modification of ascorbic acid and curcumin to combat buprofezin toxicity by using molecular dynamics study. Sci. Rep. 14(1), 28445 (2024).
Laubenbacher, R. et al. Toward mechanistic medical digital twins: some use cases in immunology. Front. Digit. Health 6, 1349595 (2024).
Mishra, S. K. et al. A mutation-based reverse vaccinology approach considering variability in epitopes to combat multi-strains: A study using glycoprotein of LASV. J. Cell Mol. Med. 29(20), e70907 (2025).
Zaib, S. et al. Designing multi-epitope monkeypox virus-specific vaccine using immunoinformatics approach. J. Infect. Public Health 16(1), 107–116 (2023).
Naveed, M. et al. In-silico and computational active site-driven design and characterization of beta-NGF-Ab fusion protein as a novel and targeted alzheimer’s disease therapy. J. Comput. Biophys. Chem 1(16), 16 (2025).
Das, E. et al. Development of a multiple-epitope-based vaccine for hepatitis C virus genotypes 1a and 1b: An in-silico reverse vaccinology approach. In silico Pharmacol. 12(2), 100 (2024).
Nahian, M. et al. Development of a broad-spectrum epitope-based vaccine against Streptococcus pneumoniae. PLoS ONE 20(1), e0317216 (2025).
Roy, A. et al. Integrating pan-genome and reverse vaccinology to design multi-epitope vaccine against Herpes simplex virus type-1. 3 Biotech 14(7), 176 (2024).
Biswas, R. et al. Designing multi-epitope vaccine against human cytomegalovirus integrating pan-genome and reverse vaccinology pipelines. Biologicals 87, 101782 (2024).
Mishra, S. K. et al. Integrated immunoinformatics and reverse vaccinology assisted novel multi-epitope vaccine against Coxsackievirus A10 investigating its whole genome encoded polyprotein. J. Mol. Liq. 433, 127883 (2025).
Zhu, X. et al. Design of multi-epitope vaccine against porcine rotavirus using computational biology and molecular dynamics simulation approaches. Virol. J. 21(1), 160 (2024).
Lyu, J. et al. β-defensin 3 modulates macrophage activation and orientation during acute inflammatory response to Porphyromonas gingivalis lipopolysaccharide. Cytokine 92, 48–54 (2017).
Wang, W. et al. Human β-defensin-3 induces IL-8 release and apoptosis in airway smooth muscle cells. Clin. Exp. Allergy 47(9), 1138–1149 (2017).
Wei, M. et al. Design and assessment of two broad-spectrum multi-epitope vaccine candidates against bovine viral diarrhea virus based on the E0 or E2 envelope glycoprotein. Vet. J. 309, 106296 (2025).
Wu, H. et al. In silico epitope-based peptide vaccine design against influenza b virus: An immunoinformatics approach. Processes 13(3), 681 (2025).
Mukherjee, S., Karmakar, S. & Babu, S. P. S. TLR2 and TLR4 mediated host immune responses in major infectious diseases: A review. Brazil. J. Inf. Dis. 20(2), 193–204 (2016).
Jyotisha, S. S. & Qureshi, I. A. Multi-epitope vaccine against SARS-CoV-2 applying immunoinformatics and molecular dynamics simulation approaches. J. Biomol. Struct. Dyn. 40(7), 2917–2933 (2022).
Haq, I. U. et al. Rational in-silico design of a multi-epitope vaccine against human rhinovirus: an immune simulation and molecular dynamics simulation approach. Vacunas 26(3), 500427 (2025).
Kumar Mishra, S. et al. An integrated mutation-based immunoinformatic approach incorporating variability in epitopes: A study based on HIV subtype C. Front. Immunol. 16, 1540253 (2025).
Biswas, R. & Anbarasu, A. Identification of novel zinc-binding inhibitors against key microbial metallohydrolase DapE in Klebsiella pneumoniae: An integrated ligand-based virtual screening, molecular docking, molecular dynamics, and MM/PBSA approach. Integr. Biol. 17, zyaf018 (2025).
