In silico design and immunoinformatics assessment of a multiepitope vaccine targeting borealpox virus

in-silico-design-and-immunoinformatics-assessment-of-a-multiepitope-vaccine-targeting-borealpox-virus
In silico design and immunoinformatics assessment of a multiepitope vaccine targeting borealpox virus
  • Omoruyi, P. O. et al. Borealpox virus: A comprehensive review of its emergence and global recommendations. J. Health Sci. Med. Res. 43(2), 20241092 (2025).

    Google Scholar 

  • Bishnoi, A. et al. Understanding Borealpox virus: an update for clinicians following the first mortality. Int. J. Dermatol. 63(10), e271–e273 (2024).

  • Nikitin, V. N., Merkuleva, I. A. & Shcherbakov, D. N. Monoclonal antibodies in light of Mpox outbreak: Current research, therapeutic targets, and animal models. Antibodies 14(1), 20 (2025).

    Google Scholar 

  • Mooring, E. Q. et al. Six cases of borealpox and evidence of a zoonotic source—Alaska, 2020–2023. Clin. Infect. Dis. ciaf497 (2025).

  • Rogers, J. H. et al. Fatal borealpox in an immunosuppressed patient treated with antivirals and vaccinia immunoglobulin-Alaska, 2023. Clin Infect Dis 80(5), 1053–1059 (2025).

    Google Scholar 

  • Douglass, N. Borealpox (Alaskapox) virus: will there be more emerging zoonotic orthopoxviruses? Lancet Microbe. 5(8), 100883 (2024).

  • Do, T. N. D. et al. The triple combination of Remdesivir (GS-441524), Molnupiravir and Ribavirin is highly efficient in inhibiting coronavirus replication in human nasal airway epithelial cell cultures and in a hamster infection model. Antiviral Res. 231, 105994 (2024).

    Google Scholar 

  • Hanafy, A. S. & Abd-Elsalam, S. Challenges in COVID-19 drug treatment in patients with advanced liver diseases: A hepatology perspective. World J. Gastroenterol. 26(46), 7272 (2020).

    Google Scholar 

  • Thomas, S. Plotting the major proteins of borealpox virus. Front. Virol. 4, 1451810 (2024).

  • Šantak, M. & Matić, Z. The role of nucleoprotein in immunity to human negative-stranded RNA viruses—not just another brick in the viral nucleocapsid. Viruses 14(3), 521 (2022).

    Google Scholar 

  • Mortazavi, B., Molaei, A. & Fard, N. A. Multi-epitopevaccines, from design to expression; an in silico approach. Hum. Immunol. 85(3), 110804 (2024).

    Google Scholar 

  • Wei, Y. et al. Advances of computational methods enhance the development of multi-epitope vaccines. Brief. Bioinform. 26(1), bbaf055 (2025).

    Google Scholar 

  • Shawan, M. M. A. K. et al. Advances in computational and bioinformatics tools and databases for designing and developing a multi-epitope-based peptide vaccine. Int. J. Pept. Res. Ther. 29(4), 60 (2023).

    Google Scholar 

  • Gomase, V. S., Sharma, R. & Dhamane, S. P. Immunoinformatics approach for optimization of targeted vaccine design: new paradigm in clinical trials and healthcare management. Rev. Recent Clin. Trials (2025).

  • Basmenj, E. R. et al. Computational epitope-based vaccine design with bioinformatics approach; a review. Heliyon 11(1) (2025).

  • Anderson, L. N. et al. Computational tools and data integration to accelerate vaccine development: Challenges, opportunities, and future directions. Front. Immunol. 16, 1502484 (2025).

    Google Scholar 

  • UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic. Acids Res. 47(D1), D506–D515 (2019).

    Google Scholar 

  • Doytchinova, I. A. & Flower, D. R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics 8(1), 4 (2007).

    Google Scholar 

  • Dimitrov, I. et al. AllerTOP v.2—a server for in silico prediction of allergens. J. Mol. Model. 20(6), 2278 (2014).

    Google Scholar 

  • Krogh, A. et al. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305(3), 567–580 (2001).

    Google Scholar 

  • Reynisson, B. et al. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic. Acids Res. 48(W1), W449–W454 (2020).

  • Naveed, M. et al. Rational computational design and development of an immunogenic multiepitope vaccine incorporating transmembrane proteins of Fusobacterium necrophorum. Sci. Rep. 15(1), 15587 (2025).

    Google Scholar 

  • Bui, H.-H. et al. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinform. 7(1), 153 (2006).

    Google Scholar 

  • Srivastava, S. et al. Structural basis of development of multi-epitope vaccine against Middle East respiratory syndrome using in silico approach. Infect. Drug Resist. 11, 2377–2391 (2018).

  • Guryanova, S. V. & Ovchinnikova, T. V. Immunomodulatory and allergenic properties of antimicrobial peptides. Int. J. Mol. Sci. 23(5), 2499 (2022).

    Google Scholar 

  • Solanki, S. S. et al. Promising role of defensins peptides as therapeutics to combat against viral infection. Microb. Pathog. 155, 104930 (2021).

    Google Scholar 

  • Idrees, M. et al. Core-proteomics-based annotation of antigenic targets and reverse-vaccinology-assisted design of ensemble immunogen against the emerging nosocomial infection-causing bacterium Elizabethkingia meningoseptica. Int. J. Environ. Res. Public Health 19(1), 194 (2021).

    Google Scholar 

  • Kumar, K. M. et al. Immunoinformatic exploration of a multi-epitope-based peptide vaccine candidate targeting emerging variants of SARS-CoV-2. Front. Microbiol. 14, 1251716 (2023).

    Google Scholar 

  • Gasteiger, E. et al. Protein identification and analysis tools on the ExPASy server. In The proteomics protocols handbook 571–607 (Springer, 2005).

    Google Scholar 

  • Hanif, N. et al. In silico characterization of hypothetical protein AZJ53_10480 in Streptococcus pneumoniae. BioSci. Rev. 6(4), 1–12 (2024).

    Google Scholar 

  • Hon, J. et al. SoluProt: prediction of soluble protein expression in Escherichia coli. Bioinformatics 37(1), 23–28 (2021).

    Google Scholar 

  • Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630(8016), 493–500 (2024).

    Google Scholar 

  • Colovos, C. & Yeates, T. O. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2(9), 1511–1519 (1993).

    Google Scholar 

  • Hanif, N. et al. Computational drug design targeting MYH7 for hypertrophic cardiomyopathy integrating molecular docking, density functional theory, and molecular dynamics simulations. J. Appl. Biol. Sci. 19(3), 179–192 (2025).

    Google Scholar 

  • Ponomarenko, J. et al. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinform. 9(1), 514 (2008).

    Google Scholar 

  • Naveed, M. et al. Development of a broad-spectrum multiepitope vaccine against dabie bandavirus through immunoinformatic approaches. Int. Immunopharmacol. 166, 115492 (2025).

    Google Scholar 

  • Yan, Y. et al. The HDOCK server for integrated protein–protein docking. Nat. Protoc. 15(5), 1829–1852 (2020).

    Google Scholar 

  • Kozakov, D. et al. The ClusPro web server for protein–protein docking. Nat. Protoc. 12(2), 255–278 (2017).

    Google Scholar 

  • Laskowski, R. A. et al. PDBsum: Structural summaries of PDB entries. Protein Sci. 27(1), 129–134 (2018).

    Google Scholar 

  • Naveed, M. et al. Designing IL-24-P18 fusion protein through computational engineering for targeted breast cancer therapy. J. Comput. Biophys. Chem. 25(01), 109–123 (2025).

    Google Scholar 

  • Xue, L. C. et al. PRODIGY: a web server for predicting the binding affinity of protein–protein complexes. Bioinformatics 32(23), 3676–3678 (2016).

    Google Scholar 

  • Case, D. A. et al. The Amber biomolecular simulation programs. J. Comput. Chem. 26(16), 1668–1688 (2005).

    Google Scholar 

  • Mark, P. & Nilsson, L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A 105(43), 9954–9960 (2001).

    Google Scholar 

  • Naveed, M. et al. Combining network pharmacology and computational approaches for screening of Apiaceae-derived phytochemicals as inhibitors of DNA polymerase III in Streptococcus pyogenes causing streptococcal toxic shock syndrome. Chin. J. Anal. Chem. 100632 (2025).

  • Sadia, H. et al. Natural AI-based drug designing by modification of ascorbic acid and curcumin to combat buprofezin toxicity by using molecular dynamics study. Sci. Rep. 14(1), 28445 (2024).

    Google Scholar 

  • Laubenbacher, R. et al. Toward mechanistic medical digital twins: some use cases in immunology. Front. Digit. Health 6, 1349595 (2024).

    Google Scholar 

  • Mishra, S. K. et al. A mutation-based reverse vaccinology approach considering variability in epitopes to combat multi-strains: A study using glycoprotein of LASV. J. Cell Mol. Med. 29(20), e70907 (2025).

    Google Scholar 

  • Zaib, S. et al. Designing multi-epitope monkeypox virus-specific vaccine using immunoinformatics approach. J. Infect. Public Health 16(1), 107–116 (2023).

    Google Scholar 

  • Naveed, M. et al. In-silico and computational active site-driven design and characterization of beta-NGF-Ab fusion protein as a novel and targeted alzheimer’s disease therapy. J. Comput. Biophys. Chem 1(16), 16 (2025).

    Google Scholar 

  • Das, E. et al. Development of a multiple-epitope-based vaccine for hepatitis C virus genotypes 1a and 1b: An in-silico reverse vaccinology approach. In silico Pharmacol. 12(2), 100 (2024).

    Google Scholar 

  • Nahian, M. et al. Development of a broad-spectrum epitope-based vaccine against Streptococcus pneumoniae. PLoS ONE 20(1), e0317216 (2025).

    Google Scholar 

  • Roy, A. et al. Integrating pan-genome and reverse vaccinology to design multi-epitope vaccine against Herpes simplex virus type-1. 3 Biotech 14(7), 176 (2024).

    Google Scholar 

  • Biswas, R. et al. Designing multi-epitope vaccine against human cytomegalovirus integrating pan-genome and reverse vaccinology pipelines. Biologicals 87, 101782 (2024).

    Google Scholar 

  • Mishra, S. K. et al. Integrated immunoinformatics and reverse vaccinology assisted novel multi-epitope vaccine against Coxsackievirus A10 investigating its whole genome encoded polyprotein. J. Mol. Liq. 433, 127883 (2025).

  • Zhu, X. et al. Design of multi-epitope vaccine against porcine rotavirus using computational biology and molecular dynamics simulation approaches. Virol. J. 21(1), 160 (2024).

    Google Scholar 

  • Lyu, J. et al. β-defensin 3 modulates macrophage activation and orientation during acute inflammatory response to Porphyromonas gingivalis lipopolysaccharide. Cytokine 92, 48–54 (2017).

    Google Scholar 

  • Wang, W. et al. Human β-defensin-3 induces IL-8 release and apoptosis in airway smooth muscle cells. Clin. Exp. Allergy 47(9), 1138–1149 (2017).

    Google Scholar 

  • Wei, M. et al. Design and assessment of two broad-spectrum multi-epitope vaccine candidates against bovine viral diarrhea virus based on the E0 or E2 envelope glycoprotein. Vet. J. 309, 106296 (2025).

    Google Scholar 

  • Wu, H. et al. In silico epitope-based peptide vaccine design against influenza b virus: An immunoinformatics approach. Processes 13(3), 681 (2025).

    Google Scholar 

  • Mukherjee, S., Karmakar, S. & Babu, S. P. S. TLR2 and TLR4 mediated host immune responses in major infectious diseases: A review. Brazil. J. Inf. Dis. 20(2), 193–204 (2016).

    Google Scholar 

  • Jyotisha, S. S. & Qureshi, I. A. Multi-epitope vaccine against SARS-CoV-2 applying immunoinformatics and molecular dynamics simulation approaches. J. Biomol. Struct. Dyn. 40(7), 2917–2933 (2022).

    Google Scholar 

  • Haq, I. U. et al. Rational in-silico design of a multi-epitope vaccine against human rhinovirus: an immune simulation and molecular dynamics simulation approach. Vacunas 26(3), 500427 (2025).

  • Kumar Mishra, S. et al. An integrated mutation-based immunoinformatic approach incorporating variability in epitopes: A study based on HIV subtype C. Front. Immunol. 16, 1540253 (2025).

    Google Scholar 

  • Biswas, R. & Anbarasu, A. Identification of novel zinc-binding inhibitors against key microbial metallohydrolase DapE in Klebsiella pneumoniae: An integrated ligand-based virtual screening, molecular docking, molecular dynamics, and MM/PBSA approach. Integr. Biol. 17, zyaf018 (2025).

    Google Scholar