In-situ dual-lighting system for HER2 nucleic acid and protein co-localization through simultaneous visual signal amplification in single pathological sections

in-situ-dual-lighting-system-for-her2-nucleic-acid-and-protein-co-localization-through-simultaneous-visual-signal-amplification-in-single-pathological-sections
In-situ dual-lighting system for HER2 nucleic acid and protein co-localization through simultaneous visual signal amplification in single pathological sections

References

  1. Ko, H. C. et al. From tissue-specific to tissue-agnostic: HER2 overexpression and the rise of antibody-drug conjugates. Front. Oncol. 15, (2025).

  2. Albagoush, S. A., Zubair, M. & Limaiem, F. Tissue Evaluation for HER2 Tumor Marker. in StatPearls (StatPearls Publishing, Treasure Island (FL), (2025).

  3. Liu, J. et al. Integrated dual-biomarker detection: Transforming proteins and nucleic acids into ssDNA for enhanced disease diagnosis. Chem. Eng. J. 502, 157910 (2024).

    Google Scholar 

  4. Bressan, D., Battistoni, G. & Hannon, G. J. The dawn of spatial omics. Science 381, eabq4964 (2023).

    Google Scholar 

  5. He, S. et al. High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. Nat. Biotechnol. 40, 1794–1806 (2022).

    Google Scholar 

  6. Hu, T. et al. NAPTUNE: nucleic acids and protein biomarkers testing via ultra-sensitive nucleases escalation. Nat. Commun. 16, 1331 (2025).

    Google Scholar 

  7. Liu, Y. et al. High-Spatial-Resolution Multi-Omics Sequencing via Deterministic Barcoding in Tissue. Cell 183, 1665–1681.e18 (2020).

    Google Scholar 

  8. Wu, S. Z. et al. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 53, 1334–1347 (2021).

    Google Scholar 

  9. Zhang, Y. et al. Simultaneous detection of protein and nucleic acid biomarkers with a CRISPR-based assay. Chem. Eng. J. 503, 158452 (2025).

    Google Scholar 

  10. Crosby, D. et al. Early detection of cancer. Science 375, eaay9040 (2022).

    Google Scholar 

  11. Tao, Y. et al. Highly efficient and robust π-FISH rainbow for multiplexed in situ detection of diverse biomolecules. Nat. Commun. 14, 443 (2023).

    Google Scholar 

  12. Park, J. W. et al. Anti-HER2 immunoliposomes for targeted therapy of human tumors. Cancer Lett. 118, 153–160 (1997).

    Google Scholar 

  13. Takegawa, N. et al. DS-8201a, a new HER2-targeting antibody-drug conjugate incorporating a novel DNA topoisomerase I inhibitor, overcomes HER2-positive gastric cancer T-DM1 resistance. Int. J. Cancer 141, 1682–1689 (2017).

    Google Scholar 

  14. Scholl, S., Beuzeboc, P. & Pouillart, P. Targeting HER2 in other tumor types. Ann. Oncol. 12, S81–S87 (2001).

    Google Scholar 

  15. Loibl, S. & Gianni, L. HER2-positive breast cancer. Lancet 389, 2415–2429 (2017).

    Google Scholar 

  16. Martin, V., Cappuzzo, F., Mazzucchelli, L. & Frattini, M. HER2 in solid tumors: more than 10 years under the microscope; where are we now?. Future Oncol. 10, 1469–1486 (2014).

    Google Scholar 

  17. Penault-Llorca, F. et al. Emerging technologies for assessing HER2 amplification. Am. J. Clin. Pathol. 132, 539–548 (2009).

    Google Scholar 

  18. Abrahao-Machado, L. F. & Scapulatempo-Neto, C. HER2 testing in gastric cancer: An update. World J. Gastroenterol. 22, 4619–4625 (2016).

    Google Scholar 

  19. Ogitani, Y. et al. DS-8201a, A Novel HER2-Targeting ADC with a Novel DNA Topoisomerase I Inhibitor, Demonstrates a Promising Antitumor Efficacy with Differentiation from T-DM1. Clin. Cancer Res. 22, 5097–5108 (2016).

    Google Scholar 

  20. Narayan, P. et al. FDA Approval Summary: Fam-Trastuzumab Deruxtecan-Nxki for the Treatment of Unresectable or Metastatic HER2-Positive Breast Cancer. Clin. Cancer Res. 27, 4478–4485 (2021).

    Google Scholar 

  21. Mehta, G. U. et al. FDA approval summary: fam-trastuzumab deruxtecan-nxki for unresectable or metastatic non-small cell lung cancer with activating HER2 mutations. Oncologist 29, 667–671 (2024).

    Google Scholar 

  22. Wolff, A. C. et al. Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. J. Clin. Oncol. 36, 2105–2122 (2022).

    Google Scholar 

  23. Tarantino, P. et al. ESMO expert consensus statements (ECS) on the definition, diagnosis, and management of HER2-low breast cancer. Ann. Oncol. 34, 645–659 (2023).

    Google Scholar 

  24. Tarantino, P. et al. HER2-Low breast cancer: pathological and clinical landscape. J. Clin. Oncol. 38, 1951–1962 (2020).

    Google Scholar 

  25. Nicolò, E., Boscolo Bielo, L., Curigliano, G. & Tarantino, P. The HER2-low revolution in breast oncology: steps forward and emerging challenges. Ther. Adv. Med. Oncol. 15, 1–16 (2023).

    Google Scholar 

  26. Nader-Marta, G. et al. Clinical characterization, prognostic, and predictive values of HER2-low in patients with early breast cancer in the PALLAS trial (ABCSG-42/AFT-05/BIG-14–13/PrE0109). Breast Cancer Res 26, 140 (2024).

    Google Scholar 

  27. Cierzniak, A., Małodobra-Mazur, M. & Tokarski, M. A new approach for the detection of genetic alterations utilizing modified loop-mediated isothermal amplification reaction (LAMP). Sci. Rep. 15, 8071 (2025).

    Google Scholar 

  28. Ikeda, S., Takabe, K., Inagaki, M., Funakoshi, N. & Suzuki, K. Detection of gene point mutation in paraffin sections using in situ loop-mediated isothermal amplification. Pathol. Int. 57, 594–599 (2007).

    Google Scholar 

  29. Kapalamula, T. F. et al. Development of a loop-mediated isothermal amplification (LAMP) method for specific detection of Mycobacterium bovis. PLoS Negl. Trop. Dis. 15, e0008996 (2021).

    Google Scholar 

  30. Choi, J. H. et al. Tyramide signal amplification for a highly sensitive multiplex immunoassay based on encoded hydrogel microparticles. Analyst 150, 2118–2127 (2025).

    Google Scholar 

  31. Kubelka-Sabit, K., Prodanova, I., Zografski, G. & Basheska, N. In situ hybridization, with or without tyramide signal amplification, in evaluation of human papillomavirus status inearly stage cervical carcinoma. Balk. J. Med. Genet. 11, 41–50 (2008).

    Google Scholar 

  32. Alzu’bi, A., Sankar, N., Crosier, M., Kerwin, J. & Clowry, G. J. Tyramide signal amplification coupled with multiple immunolabeling and RNAScope in situ hybridization in formaldehyde-fixed paraffin-embedded human fetal brain. J. Anat. 241, 33–41 (2022).

    Google Scholar 

  33. Yang, J. N. et al. RT-LAMP assay for rapid detection of the R203M mutation in SARS-CoV-2 Delta variant. Emerg. Microbes Infect. 11, 978–987 (2022).

    Google Scholar 

  34. Varona, M., Eitzmann, D. R., Pagariya, D., Anand, R. K. & Anderson, J. L. Solid-phase microextraction enables isolation of BRAF V600E circulating tumor DNA from human plasma for detection with a molecular beacon loop mediated isothermal amplification assay. Anal. Chem. 92, 3346–3353 (2020).

    Google Scholar 

  35. Guo, Y. et al. Modulation of intramolecular freedom for tuning fluorescence imaging and photooxidation of amyloid-β aggregates. Mater. Horiz. 11, 6040–6048 (2024).

    Google Scholar 

  36. PathVysion HER-2 DNA Probe Kit. https://www.molecular.abbott/content/dam/add/molecular/products/oncology/pathvysion-her-2-dna-probe-kit/30-608377.pdf. (Accessed 8 March (2025).

  37. HER2/CEN17 FISH Probe Kit. https://www.zytovision.com/downloads_products/manuals/en/z-2015-ce-ivd-en.pdf. (Accessed 8 March 2025).

  38. Schneider, F. et al. The FDA-Approved Breast Cancer HER2 Evaluation Kit (HercepTest; Dako) May Miss Some HER2-Positive Breast Cancers. Am. J. Clin. Pathol. 151, 504–510 (2019).

    Google Scholar 

  39. Ni, R., Mulligan, A. M., Have, C. & O’Malley, F. P. PGDS, A Novel Technique Combining Chromogenic In Situ Hybridization and Immunohistochemistry for the Assessment of ErbB2 (HER2/neu) Status in Breast Cancer. Appl. Immunohistochem. Mol. Morphol. 15, 316 (2007).

    Google Scholar 

  40. Nitta, H. et al. A gene-protein assay for human epidermal growth factor receptor 2 (HER2): brightfield tricolor visualization of HER2 protein, the HER2 gene, and chromosome 17 centromere (CEN17) in formalin-fixed, paraffin-embedded breast cancer tissue sections. Diagn. Pathol. 7, 60 (2012).

    Google Scholar 

  41. Ikeda, S. Novel and simple method of double-detection using fluorescence in situ hybridization and fluorescence immunostaining of formalin-fixed paraffin-embedded tissue sections. Oncol. Lett. 15, 1084–1088 (2018).

    Google Scholar 

  42. Kurozumi, S. et al. HER2 intratumoral heterogeneity analyses by concurrent HER2 gene and protein assessment for the prognosis of HER2 negative invasive breast cancer patients. Breast Cancer Res. Treat. 158, 99–111 (2016).

    Google Scholar 

  43. Lewis, S. M. et al. Spatial omics and multiplexed imaging to explore cancer biology. Nat. Methods 18, 997–1012 (2021).

    Google Scholar 

  44. Tanaka, N. et al. Three-dimensional single-cell imaging for the analysis of RNA and protein expression in intact tumour biopsies. Nat. Biomed. Eng. 4, 875–888 (2020).

    Google Scholar 

  45. Merritt, C. R. et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat. Biotechnol. 38, 586–599 (2020).

    Google Scholar 

Download references