In vivo imaging of the immune system

in-vivo-imaging-of-the-immune-system
In vivo imaging of the immune system

References

  1. Allen, C. D. C., Okada, T., Tang, H. L. & Cyster, J. G. Imaging of germinal center selection events during affinity maturation. Science 315, 528–531 (2007).

    Article  Google Scholar 

  2. Victora, G. D. et al. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143, 592–605 (2010).

    Article  Google Scholar 

  3. Manafi-Farid, R. et al. ImmunoPET: antibody-based PET imaging in solid tumors. Front. Med. 9, 916693 (2022).

    Article  Google Scholar 

  4. Dewulf, J., Adhikari, K., Vangestel, C., Wyngaert, T. V. D. & Elvas, F. Development of antibody immuno-PET/SPECT radiopharmaceuticals for imaging of oncological disorders — an update. Cancers 12, 1868 (2020).

    Article  Google Scholar 

  5. Gawne, P. J., Man, F., Blower, P. J. & de Rosales, T. M R. Direct cell radiolabeling for in vivo cell tracking with PET and SPECT imaging. Chem. Rev. 122, 10266–10318 (2022).

    Article  Google Scholar 

  6. Dev, I. D., Puranik, A. D., Singh, B. & Prasad, V. Current and future perspectives of PDL1 PET and SPECT imaging. Semin. Nucl. Med. 54, 966–975 (2024).

    Article  Google Scholar 

  7. Hegi-Johnson, F. et al. Imaging immunity in patients with cancer using positron emission tomography. npj Precis. Oncol. 6, 1–15 (2022).

    Google Scholar 

  8. van Rij, C. M. et al. Imaging of prostate cancer with immuno-PET and immuno-SPECT using a radiolabeled anti-EGP-1 monoclonal antibody. J. Nucl. Med. 52, 1601–1607 (2011).

    Article  Google Scholar 

  9. Helfer, B. M. et al. Functional assessment of human dendritic cells labeled for in vivo 19F magnetic resonance imaging cell tracking. Cytotherapy 12, 238–250 (2010).

    Article  Google Scholar 

  10. Ahrens, E. T., Flores, R., Xu, H. & Morel, P. A. In vivo imaging platform for tracking immunotherapeutic cells. Nat. Biotechnol. 23, 983–987 (2005).

    Article  Google Scholar 

  11. Lin, E. & Alessio, A. What are the basic concepts of temporal, contrast, and spatial resolution in cardiac CT? J. Cardiovasc. Comput. Tomogr. 3, 403–408 (2009).

    Article  Google Scholar 

  12. Wang, L. V. & Yao, J. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods 13, 627–638 (2016).

    Article  Google Scholar 

  13. Zhang, Y. et al. Activatable polymeric nanoprobe for near-infrared fluorescence and photoacoustic imaging of T lymphocytes. Angew. Chem. 133, 5986–5992 (2021).

    Article  Google Scholar 

  14. Lin, L. & Wang, L. V. The emerging role of photoacoustic imaging in clinical oncology. Nat. Rev. Clin. Oncol. 19, 365–384 (2022).

    Article  Google Scholar 

  15. Qin, Z. et al. Deep tissue multi-photon imaging using adaptive optics with direct focus sensing and shaping. Nat. Biotechnol. 40, 1663–1671 (2022).

    Article  Google Scholar 

  16. Diao, S. et al. Biological imaging without autofluorescence in the second near-infrared region. Nano Res. 8, 3027–3034 (2015).

    Article  Google Scholar 

  17. Wu, Y. et al. First clinical applications for the NIR-II imaging with ICG in microsurgery. Front. Bioeng. Biotechnol. 10, 1042546 (2022).

    Article  Google Scholar 

  18. Wang, F. et al. In vivo non-invasive confocal fluorescence imaging beyond 1,700 nm using superconducting nanowire single-photon detectors. Nat. Nanotechnol. 17, 653–660 (2022).

    Article  Google Scholar 

  19. Baghdasaryan, A. et al. Phosphorylcholine-conjugated gold-molecular clusters improve signal for lymph node NIR-II fluorescence imaging in preclinical cancer models. Nat. Commun. 13, 5613 (2022).

    Article  Google Scholar 

  20. Wang, F., Zhong, Y., Bruns, O., Liang, Y. & Dai, H. In vivo NIR-II fluorescence imaging for biology and medicine. Nat. Photon. 18, 535–547 (2024).

    Article  Google Scholar 

  21. Bakker, G.-J. et al. Intravital deep-tumor single-beam 3-photon, 4-photon, and harmonic microscopy. eLife 11, e63776 (2022).

    Article  Google Scholar 

  22. Wang, T., Chen, Y., Wang, B. & Wu, M. Recent progress of second near-infrared (NIR-II) fluorescence microscopy in bioimaging. Front. Physiol. 14, 1126805 (2023).

    Article  Google Scholar 

  23. Deng, X. et al. In vivo deep-brain 2-photon fluorescent microscopy labeled with near-infrared dyes excited at the 1700 nm window. Anal. Chim. Acta 1255, 341118 (2023).

    Article  Google Scholar 

  24. Pittet, M. J. & Weissleder, R. Intravital imaging. Cell 147, 983–991 (2011).

    Article  Google Scholar 

  25. Welsher, K. et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 4, 773–780 (2009).

    Article  Google Scholar 

  26. Antaris, A. L. et al. A small-molecule dye for NIR-II imaging. Nat. Mater. 15, 235–242 (2016).

    Article  Google Scholar 

  27. Yang, Q. et al. Donor engineering for NIR-II molecular fluorophores with enhanced fluorescent performance. J. Am. Chem. Soc. 140, 1715–1724 (2018).

    Article  Google Scholar 

  28. Wang, L. et al. Benzobisthiadiazole-based small molecular near-infrared-II fluorophores: from molecular engineering to nanophototheranostics. ACS Nano 18, 4683–4703 (2024).

    Article  Google Scholar 

  29. Wang, S. et al. Photostable small-molecule NIR-II fluorescent scaffolds that cross the blood–brain barrier for noninvasive brain imaging. J. Am. Chem. Soc. 144, 23668–23676 (2022).

    Article  Google Scholar 

  30. Hu, X. et al. Crucial breakthrough of BODIPY-based NIR-II fluorescent emitters for advanced biomedical theranostics. Adv. Funct. Mater. 34, 2401325 (2024).

    Article  Google Scholar 

  31. Wei, R. et al. Rigid and photostable shortwave infrared dye absorbing/emitting beyond 1200 nm for high-contrast multiplexed imaging. J. Am. Chem. Soc. 145, 12013–12022 (2023).

    Article  Google Scholar 

  32. Meador, W. E. et al. Silicon-RosIndolizine fluorophores with shortwave infrared absorption and emission profiles enable in vivo fluorescence imaging. Nat. Chem. 16, 970–978 (2024).

    Article  Google Scholar 

  33. Liu, D. et al. Xanthene-based NIR-II dyes for in vivo dynamic imaging of blood circulation. J. Am. Chem. Soc. 143, 17136–17143 (2021).

    Article  Google Scholar 

  34. Ren, T.-B. et al. A general strategy for development of activatable NIR-II fluorescent probes for in vivo high-contrast bioimaging. Angew. Chem. Int. Ed. Engl. 60, 800–805 (2021).

    Article  Google Scholar 

  35. Yan, K. et al. Ultra-photostable small-molecule dyes facilitate near-infrared biophotonics. Nat. Commun. 15, 2593 (2024).

    Article  Google Scholar 

  36. Zhang, M. et al. Bright quantum dots emitting at ~1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging. Proc. Natl Acad. Sci. USA 115, 6590–6595 (2018).

    Article  Google Scholar 

  37. Zhong, Y. & Dai, H. A mini-review on rare-earth down-conversion nanoparticles for NIR-II imaging of biological systems. Nano Res. 13, 1281–1294 (2020).

    Article  Google Scholar 

  38. Chen, Y. et al. Shortwave infrared in vivo imaging with gold nanoclusters. Nano Lett. 17, 6330–6334 (2017).

    Article  Google Scholar 

  39. Liu, H. et al. Atomic-precision gold clusters for NIR-II imaging. Adv. Mater. 31, 1901015 (2019).

    Article  Google Scholar 

  40. Song, X. et al. A new class of NIR-II gold nanocluster-based protein biolabels for in vivo tumor-targeted imaging. Angew. Chem. Int. Ed. Engl. 60, 1306–1312 (2021).

    Article  Google Scholar 

  41. Ma, Z. et al. Cross-link-functionalized nanoparticles for rapid excretion in nanotheranostic applications. Angew. Chem. 132, 20733–20741 (2020).

    Article  Google Scholar 

  42. Ren, F. et al. Shortwave-infrared-light-emitting probes for the in vivo tracking of cancer vaccines and the elicited immune responses. Nat. Biomed. Eng. 8, 726–739 (2023).

    Article  Google Scholar 

  43. Wang, F. et al. Light-sheet microscopy in the near-infrared II window. Nat. Methods 16, 545–552 (2019).

    Article  Google Scholar 

  44. Zhu, S., Tian, R., Antaris, A. L., Chen, X. & Dai, H. Near-infrared-II molecular dyes for cancer imaging and surgery. Adv. Mater. 31, 1900321 (2019).

    Article  Google Scholar 

  45. Jiang, Y. et al. A SARS-CoV-2 vaccine on an NIR-II/SWIR emitting nanoparticle platform. Sci. Adv. 11, eadp5539 (2025).

    Article  Google Scholar 

  46. Ma, Z. et al. Near-Infrared IIb fluorescence imaging of vascular regeneration with dynamic tissue perfusion measurement and high spatial resolution. Adv. Funct. Mater. 28, 1803417 (2018).

    Article  Google Scholar 

  47. Wang, F. et al. In vivo NIR-II structured-illumination light-sheet microscopy. Proc. Natl Acad. Sci. USA 118, e2023888118 (2021).

    Article  Google Scholar 

  48. Shulman, Z. et al. T follicular helper cell dynamics in germinal centers. Science 341, 673–677 (2013).

    Article  Google Scholar 

  49. Wahl, R. L., Dilsizian, V. & Palestro, C. J. At Last, 18F-FDG for inflammation and infection! J. Nucl. Med. 62, 1048–1049 (2021).

    Article  Google Scholar 

  50. Brandes, R., Lang, F. & Schmidt, R. F. Physiologie des Menschen: mit Pathophysiologie (Springer-Verlag, 2011).

  51. Chaplin, D. D. Overview of the immune response. J. Allergy Clin. Immunol. 125, S3–S23 (2010).

    Article  Google Scholar 

  52. McDermott, A. M. Antimicrobial compounds in tears. Exp. Eye Res. 117, 53–61 (2013).

    Article  Google Scholar 

  53. Smith, J. L. The role of gastric acid in preventing foodborne disease and how bacteria overcome acid conditions. J. Food Prot. 66, 1292–1303 (2003).

    Article  Google Scholar 

  54. Mihlan, M., Safaiyan, S., Stecher, M., Paterson, N. & Lämmermann, T. Surprises from intravital imaging of the innate immune response. Annu. Rev. Cell Dev. Biol. 38, 467–489 (2022).

    Article  Google Scholar 

  55. Gordon, S. Phagocytosis: an immunobiologic process. Immunity 44, 463–475 (2016).

    Article  Google Scholar 

  56. Wong, C. H. Y., Jenne, C. N., Petri, B., Chrobok, N. L. & Kubes, P. Nucleation of platelets with blood-borne pathogens on Kupffer cells precedes other innate immunity and contributes to bacterial clearance. Nat. Immunol. 14, 785–792 (2013).

    Article  Google Scholar 

  57. Lee, W.-Y. et al. An intravascular immune response to Borrelia burgdorferi involves Kupffer cells and iNKT cells. Nat. Immunol. 11, 295–302 (2010).

    Article  Google Scholar 

  58. Neupane, A. S. & Kubes, P. Imaging reveals novel innate immune responses in lung, liver, and beyond. Immunol. Rev. 306, 244–257 (2022).

    Article  Google Scholar 

  59. Neupane, A. S. et al. Patrolling alveolar macrophages conceal bacteria from the immune system to maintain homeostasis. Cell 183, 110–125.e11 (2020).

    Article  Google Scholar 

  60. Park, S. et al. Skin-resident immune cells actively coordinate their distribution with epidermal cells during homeostasis. Nat. Cell Biol. 23, 476–484 (2021).

    Article  Google Scholar 

  61. Liarski, V. M. et al. Quantifying in situ adaptive immune cell cognate interactions in humans. Nat. Immunol. 20, 503–513 (2019).

    Article  Google Scholar 

  62. Cyster, J. G. & Allen, C. D. C. B cell responses: cell interaction dynamics and decisions. Cell 177, 524–540 (2019).

    Article  Google Scholar 

  63. Nakandakari-Higa, S. et al. Universal recording of immune cell interactions in vivo. Nature 627, 399–406 (2024).

    Article  Google Scholar 

  64. Cohen, M. et al. The interaction of CD4+ helper T cells with dendritic cells shapes the tumor microenvironment and immune checkpoint blockade response. Nat. Cancer 3, 303–317 (2022).

    Article  Google Scholar 

  65. Chatzileontiadou, D. S. M., Sloane, H., Nguyen, A. T., Gras, S. & Grant, E. J. The many faces of CD4+ T Cells: immunological and structural characteristics. Int. J. Mol. Sci. 22, 73 (2020).

    Article  Google Scholar 

  66. Hay, Z. L. Z. & Slansky, J. E. Granzymes: the molecular executors of immune-mediated cytotoxicity. Int. J. Mol. Sci. 23, 1833 (2022).

    Article  Google Scholar 

  67. Volpe, E., Sambucci, M., Battistini, L. & Borsellino, G. Fas–Fas ligand: checkpoint of T cell functions in multiple sclerosis. Front. Immunol. 7, 382 (2016).

    Article  Google Scholar 

  68. Kaech, S. M. & Ahmed, R. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naïve cells. Nat. Immunol. 2, 415–422 (2001).

    Article  Google Scholar 

  69. Cui, C. et al. Neoantigen-driven B cell and CD4 T follicular helper cell collaboration promotes anti-tumor CD8 T cell responses. Cell 184, 6101–6118.e13 (2021).

    Article  Google Scholar 

  70. Pantaleo, G., Correia, B., Fenwick, C., Joo, V. S. & Perez, L. Antibodies to combat viral infections: development strategies and progress. Nat. Rev. Drug Discov. 21, 676–696 (2022).

    Article  Google Scholar 

  71. Lanzavecchia, A. & Sallusto, F. Progressive differentiation and selection of the fittest in the immune response. Nat. Rev. Immunol. 2, 982–987 (2002).

    Article  Google Scholar 

  72. Tabatabaei, M. S. & Ahmed, M. Enzyme-linked immunosorbent assay (ELISA). Methods Mol. Biol. 2508, 115–134 (2022).

    Article  Google Scholar 

  73. Kouwenhoven, M. et al. Enzyme-linked immunospot assays provide a sensitive tool for detection of cytokine secretion by monocytes. Clin. Diagn. Lab. Immunol. 8, 1248–1257 (2001).

    Article  Google Scholar 

  74. Perfetto, S. P., Chattopadhyay, P. K. & Roederer, M. Seventeen-colour flow cytometry: unravelling the immune system. Nat. Rev. Immunol. 4, 648–655 (2004).

    Article  Google Scholar 

  75. Mocellin, S. et al. Use of quantitative real-time PCR to determine immune cell density and cytokine gene profile in the tumor microenvironment. J. Immunol. Methods 280, 1–11 (2003).

    Article  Google Scholar 

  76. Al-Lamki, R. S., Bradley, J. R. & Pober, J. S. Human organ culture: updating the approach to bridge the gap from in vitro to in vivo in inflammation, cancer, and stem cell biology. Front. Med. 4, 148 (2017).

    Article  Google Scholar 

  77. Kanie, K. et al. Modeling of T cell-mediated autoimmune pituitary disease using human induced pluripotent stem cell-originated organoid. Nat. Commun. 16, 7900 (2025).

    Article  Google Scholar 

  78. Poole, J. J. A. & Mostaço-Guidolin, L. B. Optical microscopy and the extracellular matrix structure: a review. Cells 10, 1760 (2021).

    Article  Google Scholar 

  79. Balasubramanian, H., Hobson, C. M., Chew, T.-L. & Aaron, J. S. Imagining the future of optical microscopy: everything, everywhere, all at once. Commun. Biol. 6, 1–12 (2023).

    Article  Google Scholar 

  80. Jonkman, J., Brown, C. M., Wright, G. D., Anderson, K. I. & North, A. J. Tutorial: guidance for quantitative confocal microscopy. Nat. Protoc. 15, 1585–1611 (2020).

    Article  Google Scholar 

  81. Gu, Y. et al. Immune microniches shape intestinal Treg function. Nature 628, 854–862 (2024).

    Article  Google Scholar 

  82. Eisenstein, S. et al. Myeloid derived suppressor cells as a vehicle for tumor-specific oncolytic viral therapy. Cancer Res. 73, 5003–5015 (2013).

    Article  Google Scholar 

  83. Weist, M. R. et al. PET of adoptively transferred chimeric antigen receptor T cells with 89Zr-oxine. J. Nucl. Med. 59, 1531–1537 (2018).

    Article  Google Scholar 

  84. Liu, J. et al. Ultrasound molecular imaging of acute cardiac transplantation rejection using nanobubbles targeted to T lymphocytes. Biomaterials 162, 200–207 (2018).

    Article  Google Scholar 

  85. Lee, H. et al. Optimization of dendritic cell-mediated cytotoxic T-cell activation by tracking of dendritic cell migration using reporter gene imaging. Mol. Imaging Biol. 20, 398–406 (2018).

    Article  Google Scholar 

  86. Marangoni, F. et al. Expansion of tumor-associated Treg cells upon disruption of a CTLA-4-dependent feedback loop. Cell 184, 3998–4015.e19 (2021).

    Article  Google Scholar 

  87. Reinders, F. C. J. et al. Magnetic resonance guided elective neck irradiation targeting individual lymph nodes: a new concept. Phys. Imaging Radiat. Oncol. 20, 76–81 (2021).

    Article  Google Scholar 

  88. Pai, A., Shetty, R., Hodis, B. & Chowdhury, Y. S. in StatPearls (StatPearls Publishing, 2024).

  89. Mukhatov, A., Le, T.-A., Pham, T. T. & Do, T. D. A comprehensive review on magnetic imaging techniques for biomedical applications. Nano Sel. 4, 213–230 (2023).

    Article  Google Scholar 

  90. Takahashi, M., Uematsu, H. & Hatabu, H. MR imaging at high magnetic fields. Eur. J. Radiol. 46, 45–52 (2003).

    Article  Google Scholar 

  91. Ladd, M. E. et al. Pros and cons of ultra-high-field MRI/MRS for human application. Prog. Nucl. Magn. Reson. Spectrosc. 109, 1–50 (2018).

    Article  Google Scholar 

  92. Ahrens, E. T. & Bulte, J. W. M. Tracking immune cells in vivo using magnetic resonance imaging. Nat. Rev. Immunol. 13, 755–763 (2013).

    Article  Google Scholar 

  93. Mohanty, S. et al. Nanoparticle enhanced MRI can monitor macrophage response to CD47 mAb immunotherapy in osteosarcoma. Cell Death Dis. 10, 1–14 (2019).

    Article  Google Scholar 

  94. Ahrens, E. T., Feili-Hariri, M., Xu, H., Genove, G. & Morel, P. A. Receptor-mediated endocytosis of iron-oxide particles provides efficient labeling of dendritic cells for in vivo MR imaging. Magn. Reson. Med. 49, 1006–1013 (2003).

    Article  Google Scholar 

  95. Luchetti, A. et al. Monoclonal antibodies conjugated with superparamagnetic iron oxide particles allow magnetic resonance imaging detection of lymphocytes in the mouse brain. Mol. Imaging 11, 114–125 (2012).

    Article  Google Scholar 

  96. Kadayakkara, D. K., Ranganathan, S., Young, W.-B. & Ahrens, E. T. Assaying macrophage activity in a murine model of inflammatory bowel disease using fluorine-19 MRI. Lab Invest. 92, 636–645 (2012).

    Article  Google Scholar 

  97. Le Bihan, D. et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161, 401–407 (1986).

    Article  Google Scholar 

  98. Bihan, D. L. et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168, 566 (1988).

    Article  Google Scholar 

  99. Alauddin, M. M. Positron emission tomography (PET) imaging with 18F-based radiotracers. Am. J. Nucl. Med. Mol. Imaging 2, 55–76 (2011).

    Google Scholar 

  100. Markovic, S. N. et al. Non-invasive visualization of tumor infiltrating lymphocytes in patients with metastatic melanoma undergoing immune checkpoint inhibitor therapy: a pilot study. Oncotarget 9, 30268–30278 (2018).

    Article  Google Scholar 

  101. Moses, W. W. Fundamental limits of spatial resolution in PET. Nucl. Instrum. Methods Phys. Res. A 648, S236–S240 (2011).

    Article  Google Scholar 

  102. Krebs, S. et al. Antibody with infinite affinity for in vivo tracking of genetically engineered lymphocytes. J. Nucl. Med. 59, 1894–1900 (2018).

    Article  Google Scholar 

  103. Minn, I. et al. Imaging CAR T cell therapy with PSMA-targeted positron emission tomography. Sci. Adv. 5, eaaw5096 (2019).

    Article  Google Scholar 

  104. Salehi Farid, A. et al. CD45-PET is a robust, non-invasive tool for imaging inflammation. Nature 639, 214–224 (2025).

    Article  Google Scholar 

  105. Kist de Ruijter, L. et al. Whole-body CD8+ T cell visualization before and during cancer immunotherapy: a phase 1/2 trial. Nat. Med. 28, 2601–2610 (2022).

    Article  Google Scholar 

  106. Zhou, M. et al. [68Ga]Ga-AUNP-12 PET imaging to assess the PD-L1 status in preclinical and first-in-human study. Eur. J. Nucl. Med. Mol. Imaging 51, 369–379 (2024).

    Article  Google Scholar 

  107. Zhou, M. et al. ImmunoPET imaging of LAG-3 expression in tumor microenvironment with 68Ga-labelled cyclic peptides tracers: from bench to bedside. J. Immunother. Cancer 12, e009153 (2024).

    Article  Google Scholar 

  108. Wang, X. et al. Preclinical and exploratory human studies of novel 68Ga-labeled D-peptide antagonist for PET imaging of TIGIT expression in cancers. Eur. J. Nucl. Med. Mol. Imaging 49, 2584–2594 (2022).

    Article  Google Scholar 

  109. Wilson, K. E., Wang, T. Y. & Willmann, J. K. Acoustic and photoacoustic molecular imaging of cancer. J. Nucl. Med. 54, 1851–1854 (2013).

    Article  Google Scholar 

  110. Levy, J. et al. High-frequency ultrasound in clinical dermatology: a review. Ultrasound J. 13, 24 (2021).

    Article  Google Scholar 

  111. Fiori, G. et al. A comparative study on depth of penetration measurements in diagnostic ultrasounds through the adaptive SNR threshold method. IEEE Trans. Instrum. Meas. 72, 1–8 (2023).

    Article  Google Scholar 

  112. Zhou, S., Park, G., Lin, M., Yang, X. & Xu, S. Wearable ultrasound technology. Nat. Rev. Bioeng. 3, 835–854 (2025).

    Article  Google Scholar 

  113. Sumaiya, K. & Kawathekar, S. S. Drawbacks of poor-quality ultrasound images and its enhancement. Int. J. Computer Appl. 175, 47–55 (2020).

    Google Scholar 

  114. Fournier, L., Taille, T. & Chauvierre, C. Microbubbles for human diagnosis and therapy. Biomaterials 294, 122025 (2023).

    Article  Google Scholar 

  115. Weber, J., Beard, P. C. & Bohndiek, S. E. Contrast agents for molecular photoacoustic imaging. Nat. Methods 13, 639–650 (2016).

    Article  Google Scholar 

  116. Lee, H. W. et al. Dual reporter gene imaging for tracking macrophage migration using the human sodium iodide symporter and an enhanced firefly luciferase in a murine inflammation model. Mol. Imaging Biol. 15, 703–712 (2013).

    Article  Google Scholar 

  117. He, S., Li, J., Lyu, Y., Huang, J. & Pu, K. Near-Infrared fluorescent macromolecular reporters for real-time imaging and urinalysis of cancer immunotherapy. J. Am. Chem. Soc. 142, 7075–7082 (2020).

    Article  Google Scholar 

  118. He, S., Cheng, P. & Pu, K. Activatable near-infrared probes for the detection of specific populations of tumour-infiltrating leukocytes in vivo and in urine. Nat. Biomed. Eng. 7, 281–297 (2023).

    Article  Google Scholar 

  119. Hu, Y., Yu, J., Xu, M. & Pu, K. Bienzyme-locked activatable fluorescent probes for specific imaging of tumor-associated mast cells. J. Am. Chem. Soc. 146, 12656–12663 (2024).

    Article  Google Scholar 

  120. Mrass, P. et al. Random migration precedes stable target cell interactions of tumor-infiltrating T cells. J. Exp. Med. 203, 2749 (2006).

    Article  Google Scholar 

  121. Jacques, S. L. Optical properties of biological tissues: a review. Phys. Med. Biol. 58, R37–R61 (2013).

    Article  Google Scholar 

  122. Wang, X. et al. Image reconstruction of effective Mie scattering parameters of breast tissue in vivo with near-infrared tomography. J. Biomed. Opt. 11, 041106 (2006).

    Article  Google Scholar 

  123. Diao, S. et al. Fluorescence imaging in vivo at wavelengths beyond 1500 nm. Angew. Chem. Int. Ed. 54, 14758–14762 (2015).

    Article  Google Scholar 

  124. Arús, B. A. et al. Shortwave infrared fluorescence imaging of peripheral organs in awake and freely moving mice. Front. Neurosci. 17, 1135494 (2023).

    Article  Google Scholar 

  125. Wang, X. et al. An emerging toolkit of Ho3+ sensitized lanthanide nanocrystals with NIR-II excitation and emission for in vivo bioimaging. J. Am. Chem. Soc. 147, 2182–2192 (2025).

    Article  Google Scholar 

  126. Dodt, H.-U. et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat. Methods 4, 331–336 (2007).

    Article  Google Scholar 

  127. Liu, P. et al. Airy beam assisted NIR-II light-sheet microscopy. Nano Today 47, 101628 (2022).

    Article  Google Scholar 

  128. Xia, F. et al. Short-wave infrared confocal fluorescence imaging of deep mouse brain with a superconducting nanowire single-photon detector. ACS Photon. 8, 2800–2810 (2021).

    Article  Google Scholar 

  129. Pinkard, H. et al. Learned adaptive multiphoton illumination microscopy for large-scale immune response imaging. Nat. Commun. 12, 1916 (2021).

    Article  Google Scholar 

  130. Gu, M., Gan, X., Kisteman, A. & Xu, M. G. Comparison of penetration depth between two-photon excitation and single-photon excitation in imaging through turbid tissue media. Appl. Phys. Lett. 77, 1551–1553 (2000).

    Article  Google Scholar 

  131. Tong, S. et al. In vivo deep-brain 3- and 4-photon fluorescence imaging of subcortical structures labeled by quantum dots excited at the 2200 nm window. ACS Nano 17, 3686–3695 (2023).

    Article  Google Scholar 

  132. Bueno, J. M., Ávila, F. J. & Artal, P. Comparing the performance of a femto fiber-based laser and a Ti:sapphire used for multiphoton microscopy applications. Appl. Opt. 58, 3830–3835 (2019).

    Article  Google Scholar 

  133. Song, S. et al. Molecular engineering of AIE luminogens for NIR-II/IIb bioimaging and surgical navigation of lymph nodes. Matter 5, 2847–2863 (2022).

    Article  Google Scholar 

  134. Choe, K. et al. Intravital three-photon microscopy allows visualization over the entire depth of mouse lymph nodes. Nat. Immunol. 23, 330–340 (2022).

    Article  Google Scholar 

  135. Zhong, Y. et al. In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles. Nat. Biotechnol. 37, 1322–1331 (2019).

    Article  Google Scholar 

  136. Hor, J. L. et al. Spatiotemporally distinct interactions with dendritic cell subsets facilitates CD4+ and CD8+ T cell activation to localized viral infection. Immunity 43, 554–565 (2015).

  137. Mi, C. et al. Bone disease imaging through the near-infrared-II window. Nat. Commun. 14, 6287 (2023).

    Article  Google Scholar 

  138. Song, Y. et al. Advancements in noninvasive techniques for transplant rejection: from biomarker detection to molecular imaging. J. Transl. Med. 23, 147 (2025).

    Article  Google Scholar 

  139. Hu, Z. et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat. Biomed. Eng. 4, 259–271 (2020).

    Article  Google Scholar 

  140. Ma, Z., Wang, F., Wang, W., Zhong, Y. & Dai, H. Deep learning for in vivo near-infrared imaging. Proc. Natl Acad. Sci. USA 118, e2021446118 (2021).

    Article  Google Scholar 

  141. Zidane, M. et al. A review on deep learning applications in highly multiplexed tissue imaging data analysis. Front. Bioinform. 3, 1159381 (2023).

    Article  Google Scholar 

  142. Ou, Z. et al. Achieving optical transparency in live animals with absorbing molecules. Science 385, 6713 (2024).

    Article  Google Scholar 

  143. Kim, I. et al. Real-time, in situ imaging of macrophages via phase-change peptide nanoemulsions. Small 19, 2301673 (2023).

    Article  Google Scholar 

  144. Jiang, Y., Hou, X., Zhao, X., Jing, J. & Sun, L. Tracking adoptive natural killer cells via ultrasound imaging assisted with nanobubbles. Acta Biomater. 169, 542–555 (2023).

    Article  Google Scholar 

  145. Bourdeau, R. W. et al. Acoustic reporter genes for noninvasive imaging of microorganisms in mammalian hosts. Nature 553, 86–90 (2018).

    Article  Google Scholar 

  146. Xu, Y. et al. Superparamagnetic MRI probes for in vivo tracking of dendritic cell migration with a clinical 3 T scanner. Biomaterials 58, 63–71 (2015).

    Article  Google Scholar 

  147. Mayer, K. E. et al. T-cell functionality testing is highly relevant to developing novel immuno-tracers monitoring T cells in the context of immunotherapies and revealed CD7 as an attractive target. Theranostics 8, 6070–6087 (2018).

    Article  Google Scholar 

  148. Yoon, J. T., Longtine, M. S., Marquez-Nostra, B. V. & Wahl, R. L. Evaluation of next-generation anti-CD20 antibodies labeled with 89Zr in human lymphoma xenografts. J. Nucl. Med. 59, 1219–1224 (2018).

    Article  Google Scholar 

  149. Pandit-Taskar, N. et al. First-in-humans imaging with 89Zr-Df-IAB22M2C anti-CD8 minibody in patients with solid malignancies: preliminary pharmacokinetics, biodistribution, and lesion targeting. J. Nucl. Med. 61, 512–519 (2020).

    Article  Google Scholar 

  150. Emami-Shahri, N. et al. Clinically compliant spatial and temporal imaging of chimeric antigen receptor T-cells. Nat. Commun. 9, 1081 (2018).

    Article  Google Scholar 

  151. Garcia, J. et al. Naturally occurring T cell mutations enhance engineered T cell therapies. Nature 626, 626–634 (2024).

    Article  Google Scholar 

  152. Antaris, A. L. et al. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging. Nat. Commun. 8, 15269 (2017).

    Article  Google Scholar 

  153. Deng, G. et al. Near-infrared fluorescence imaging in the largely unexplored window of 900–1,000 nm. Theranostics 8, 4116–4128 (2018).

    Article  Google Scholar 

  154. Mendes, L. S. T., Du, M.-Q., Matutes, E. & Wotherspoon, A. Splenic marginal zone lymphoma: a review of the clinical presentation, pathology, molecular biology, and management. Blood Lymph. Cancer Target Ther. 4, 29–38 (2014).

    Google Scholar 

  155. Leitgeb, R. A. & Baumann, B. Multimodal optical medical imaging concepts based on optical coherence tomography. Front. Phys. 6, 114 (2018).

    Article  Google Scholar 

  156. Walter, A. et al. Correlated multimodal imaging in life sciences: expanding the biomedical horizon. Front. Phys. 8, 47 (2020).

  157. Pogue, B. W., Leblond, F., Krishnaswamy, V. & Paulsen, K. D. Radiologic and near-infrared/optical spectroscopic imaging: where is the synergy? Am. J. Roentgenol. 195, 321–332 (2010).

    Article  Google Scholar 

  158. Yao, J. & Wang, L. V. Sensitivity of photoacoustic microscopy. Photoacoustics 2, 87–101 (2014).

    Article  Google Scholar 

  159. Huysmans, H. et al. Expression kinetics and innate immune response after electroporation and LNP-mediated delivery of a self-amplifying mRNA in the skin. Mol. Ther. Nucleic Acids 17, 867–878 (2019).

    Article  Google Scholar 

  160. Zhang, F. et al. Preclinical lymphatic imaging. Mol. Imaging Biol. 13, 599–612 (2011).

    Article  Google Scholar 

  161. Ying, M. & Ahuja, A. T. Ultrasound of neck lymph nodes: how to do it and how do they look? Radiography 12, 105–117 (2006).

    Article  Google Scholar 

  162. Goldinger, S. M. et al. Nano-particle vaccination combined with TLR-7 and -9 ligands triggers memory and effector CD8+ T-cell responses in melanoma patients. Eur. J. Immunol. 42, 3049–3061 (2012).

    Article  Google Scholar 

  163. Hong, G. et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photon. 8, 723–730 (2014).

    Article  Google Scholar 

  164. Zhou, B., Tao, L., Tsang, Y. H., Jin, W. & Pun, E. Y.-B. Superbroadband near-infrared emission and energy transfer in Pr3+–Er3+ codoped fluorotellurite glasses. Opt. Express 20, 12205–12211 (2012).

    Article  Google Scholar 

  165. Fan, Y. et al. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol. 13, 941–946 (2018).

    Article  Google Scholar 

  166. Hong, G. et al. Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nat. Commun. 5, 4206 (2014).

    Article  Google Scholar 

  167. Kaur, R., Kruse, N. A., Smith, C., Hammer, N. I. & Delcamp, J. H. Comparison of vinyldimethylaniline and indolizine donor groups on Si-substituted xanthene core shortwave infrared fluorophores. ChemPhotoChem 8, e202400023 (2024).

    Article  Google Scholar 

  168. Loganathan, S. et al. Ultrashort pulsed laser-assisted direct restoration of human enamel using 3D printable biocomposite. Adv. Mater. Technol. 10, 2401362 (2025).

    Article  Google Scholar 

  169. Ganem, J. & Bowman, S. R. Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources. Nanoscale Res. Lett. 8, 455 (2013).

    Article  Google Scholar 

  170. Dai, H. et al. Small molecular NIR-II fluorophores for cancer phototheranostics. Innovation 2, 100082 (2021).

    Google Scholar 

  171. Yeroslavsky, G. et al. Photostabilization of indocyanine green dye by energy transfer in phospholipid-PEG micelles. J. Photopolym. Sci. Technol. 32, 115–121 (2019).

    Article  Google Scholar 

  172. Mar’ina, U. A., Vorob’ev, V. A. & Mar’in, A. P. CaSnO3: Yb3+, Er3+, Ho3+ system synthesis and study of its luminescence under IR excitation. Mod. Electron. Mater. 4, 71–75 (2018).

    Article  Google Scholar 

Download references