Inflammation-specific DNA origami nanodevice for delivery of siRNAs to treat ulcerative colitis

inflammation-specific-dna-origami-nanodevice-for-delivery-of-sirnas-to-treat-ulcerative-colitis
Inflammation-specific DNA origami nanodevice for delivery of siRNAs to treat ulcerative colitis

Data availability

All data from this study are fully available within the article, Supplementary Information or Source Data file. Any additional requests for information can be directed to, and will be fulfilled by, the corresponding authors. Source data are provided with this paper.

References

  1. Abraham, C. & Cho, J. H. Inflammatory bowel disease. N. Engl. J. Med. 361, 2066–2078 (2009).

    Google Scholar 

  2. Elinav, E. & Peer, D. Harnessing nanomedicine for mucosal theranostics–a silver bullet at last? ACS Nano 7, 2883–2890 (2013).

    Google Scholar 

  3. Olesen, M. T., Ballarín-González, B. & Howard, K. A. The application of RNAi-based treatments for inflammatory bowel disease. Drug Deliv. Transl. Res. 4, 4–18 (2014).

    Google Scholar 

  4. Castanotto, D. & Rossi, J. J. The promises and pitfalls of RNA-interference-based therapeutics. Nature 457, 426–433 (2009).

    Google Scholar 

  5. Shinn. J. et al. Oral nanomedicines for siRNA delivery to treat inflammatory bowel disease. Pharmaceutics 14, 1969 (2022).

  6. Paunovska, K., Loughrey, D. & Dahlman, J. E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet 23, 265–280 (2022).

    Google Scholar 

  7. Zhou, X. et al. In vivo self-assembled siRNA as a modality for combination therapy of ulcerative colitis. Nat. Commun. 13, 5700 (2022).

    Google Scholar 

  8. Dammes, N. et al. Conformation-sensitive targeting of lipid nanoparticles for RNA therapeutics. Nat. Nanotechnol. 16, 1030–1038 (2021).

    Google Scholar 

  9. Cheng, C. J., Tietjen, G. T., Saucier-Sawyer, J. K. & Saltzman, W. M. A holistic approach to targeting disease with polymeric nanoparticles. Nat. Rev. Drug Discov. 14, 239–247 (2015).

    Google Scholar 

  10. Zhao, Y. et al. A temporally resolved DNA framework state machine in living cells. Nat. Mach. Intell. 5, 980–990 (2023).

    Google Scholar 

  11. Zhan, P. et al. Recent advances in DNA origami-engineered nanomaterials and applications. Chem. Rev. 123, 3976–4050 (2023).

    Google Scholar 

  12. Pitikultham, P. et al. Stimuli-responsive DNA origami nanodevices and their biological applications. ChemMedChem 17, e202100635 (2022).

    Google Scholar 

  13. Wagenbauer, K. F. et al. Programmable multispecific DNA-origami-based T-cell engagers. Nat. Nanotechnol. 18, 1319–1326 (2023).

    Google Scholar 

  14. Wang, Y. et al. A DNA robotic switch with regulated autonomous display of cytotoxic ligand nanopatterns. Nat. Nanotechnol. 19, 1366–1374 (2024).

    Google Scholar 

  15. Hellmeier, J. et al. Strategies for the site-specific decoration of DNA origami nanostructures with functionally intact proteins. ACS Nano 15, 15057–15068 (2021).

    Google Scholar 

  16. Wang, Z. et al. A tubular DNA nanodevice as a siRNA/chemo-drug co-delivery vehicle for combined cancer therapy. Angew. Chem. Int Ed. Engl. 60, 2594–2598 (2021).

    Google Scholar 

  17. Yin, J. et al. An intelligent DNA nanodevice for precision thrombolysis. Nat. Mater. 23, 854–862 (2024).

    Google Scholar 

  18. Li, L. et al. A DNA origami device spatially controls CD95 signalling to induce immune tolerance in rheumatoid arthritis. Nat. Mater. 23, 993–1001 (2024).

    Google Scholar 

  19. Li, S. et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 36, 258–264 (2018).

    Google Scholar 

  20. Liu, S. et al. A DNA nanodevice-based vaccine for cancer immunotherapy. Nat. Mater. 20, 421–430 (2020).

    Google Scholar 

  21. Mol, C. D., Izumi, T., Mitra, S. & Tainer, J. A. DNA-bound structures and mutants reveal abasic DNA binding by APE1 and DNA repair coordination [corrected]. Nature 403, 451–456 (2000).

    Google Scholar 

  22. Sheng, C. et al. Spatially resolved in vivo imaging of inflammation-associated mRNA via enzymatic fluorescence amplification in a molecular beacon. Nat. Biomed. Eng. 6, 1074–1084 (2022).

    Google Scholar 

  23. Nath, S. et al. The extracellular role of DNA damage repair protein APE1 in regulation of IL-6 expression. Cell Signal 39, 18–31 (2017).

    Google Scholar 

  24. Sheng, C., Zhao, J., Yu, F. & Li, L. Enzyme translocation-mediated signal amplification for spatially selective aptasensing of ATP in inflammatory cells. Angew. Chem. Int Ed. Engl. 62, e202217551 (2023).

    Google Scholar 

  25. Hu, Q., Li, H., Wang, L., Gu, H. & Fan, C. DNA nanotechnology-enabled drug delivery systems. Chem. Rev. 119, 6459–6506 (2019).

    Google Scholar 

  26. Wang, P. et al. Visualization of the cellular uptake and trafficking of DNA origami nanostructures in cancer cells. J. Am. Chem. Soc. 140, 2478–2484 (2018).

    Google Scholar 

  27. Parton, R. G. & Simons, K. The multiple faces of caveolae. Nat. Rev. Mol. Cell Biol. 8, 185–194 (2007).

    Google Scholar 

  28. van Loo, G. & Bertrand, M. J. M. Death by TNF: a road to inflammation. Nat. Rev. Immunol. 23, 289–303 (2023).

    Google Scholar 

  29. Zhang, C. et al. Oral zero-valent-molybdenum nanodots for inflammatory bowel disease therapy. Sci. Adv. 8, eabp9882 (2022).

    Google Scholar 

  30. Hsu, N. Y. et al. NOX1 is essential for TNFα-induced intestinal epithelial ROS secretion and inhibits M cell signatures. Gut 72, 654–662 (2023).

    Google Scholar 

  31. Zhang, T. et al. Transcription factor EB modulates the homeostasis of reactive oxygen species in intestinal epithelial cells to alleviate inflammatory bowel disease. Biochimica et. Biophysica Acta Mol. Basis Dis. 1870, 167065 (2024).

    Google Scholar 

  32. Bourgonje, A. R. et al. Oxidative stress and redox-modulating therapeutics in inflammatory bowel disease. Trends Mol. Med. 26, 1034–1046 (2020).

    Google Scholar 

  33. Zhou, J. et al. Programmable probiotics modulate inflammation and gut microbiota for inflammatory bowel disease treatment after effective oral delivery. Nat. Commun. 13, 3432 (2022).

    Google Scholar 

  34. Bao, M. et al. ROS Scavenging and inflammation-directed polydopamine nanoparticles regulate gut immunity and flora therapy in inflammatory bowel disease. Acta Biomater. 161, 250–264 (2023).

    Google Scholar 

  35. Jiang, D. et al. DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury. Nat. Biomed. Eng. 2, 865–877 (2018).

    Google Scholar 

  36. Li, R. Q. et al. A DNA-based and bifunctional nanomedicine for alleviating multi-organ injury in sepsis under diabetic conditions. Acta Biomaterialia 177, 377–387 (2024).

    Google Scholar 

  37. Chen, Q. et al. Sequential therapy of acute kidney injury with a DNA nanodevice. Nano Lett. 21, 4394–4402 (2021).

    Google Scholar 

  38. Li, W. et al. A DNA nanoraft-based cytokine delivery platform for alleviation of acute kidney injury. ACS Nano 15, 18237–18249 (2021).

    Google Scholar 

  39. Duan, X. et al. Radiolabeling and preliminary evaluation of (99m)Tc-labeled DNA cube nanoparticles as potential tracers for SPECT imaging. Int. J. Nanomed. 16, 5665–5673 (2021).

    Google Scholar 

  40. Tollemeto, M. et al. Topology determines DNA origami diffusion in intestinal mucus. Nano Lett. 25, 16060–16067 (2025).

  41. Kurmaeva, E. et al. T cell-associated α4β7 but not α4β1 integrin is required for the induction and perpetuation of chronic colitis. Mucosal. Immunol. 7, 1354–1365 (2014).

    Google Scholar 

  42. Kihara, N. et al. Vanilloid receptor-1 containing primary sensory neurones mediate dextran sulphate sodium induced colitis in rats. Gut 52, 713–719 (2003).

    Google Scholar 

  43. Zhang, T. et al. Plant green pigment of chlorophyllin attenuates inflammatory bowel diseases by suppressing autophagy activation in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 323, G102–g113 (2022).

    Google Scholar 

  44. Li, W. et al. DNA-based hydrogels with multidrug sequential release for promoting diabetic wound regeneration. JACS Au 3, 2597–2608 (2023).

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (32401163 to W.L.), the Natural Science Foundation of Sichuan (2024NSFSC1689 to T.Z.), Post-Doctor Research Fund of West China Hospital, Sichuan University (2025HXBH149 to T.Z.), the Natural Science Foundation of Chongqing (CSTB2024NSCQ-MSX0107 to R.L., CSTB2023NSCQ-MSX0610 to Y.J.), Natural Science Foundation of Yuzhong District (20240121 to R.L.) and Chongqing Key Laboratory of Emergency Medicine (2024KFKTYX02 to R.L.).

Author information

Author notes

  1. These authors contributed equally: Tianci Zhang, Ruoqing Li.

Authors and Affiliations

  1. Chongqing Key Laboratory of Emergency Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China

    Tianci Zhang, Ruoqing Li & Wei Li

  2. Department of Endocrinology and Metabolism, Laboratory of Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China

    Tianci Zhang & Nanwei Tong

  3. Department of General Medicine, Chongqing Key Laboratory of Emergency Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China

    Ruoqing Li & Yi Jiang

  4. The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institute, Stockholm, Sweden

    Zhenghao Wang

  5. Department of Endocrinology and Metabolism, Research Center for Islet Transplantation, West China Hospital, Sichuan University, Chengdu, China

    Ye Zhou

  6. Animal Laboratory Center, West China Hospital, Sichuan University, Chengdu, China

    Yaojia Zhou & Xiaoting Chen

  7. Core Facility, West China Hospital, Sichuan University, Chengdu, China

    Cui Peng

Authors

  1. Tianci Zhang
  2. Ruoqing Li
  3. Zhenghao Wang
  4. Ye Zhou
  5. Yaojia Zhou
  6. Xiaoting Chen
  7. Cui Peng
  8. Yi Jiang
  9. Nanwei Tong
  10. Wei Li

Contributions

T.Z. and R.L. contributed equally to the work. T.Z. and R.L., and W.L. conceived the project, designed the experiments and wrote the manuscript. T.Z., R.L., Z.W., Y.Z., Y.Z., X.C., and C.P. performed the experiments and analyzed the data. Y.J., N.T., and W.L. revised the manuscript.

Corresponding authors

Correspondence to Yi Jiang, Nanwei Tong or Wei Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Chen-Yu Zhang and the other anonymous reviewer for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Li, R., Wang, Z. et al. Inflammation-specific DNA origami nanodevice for delivery of siRNAs to treat ulcerative colitis. Nat Commun (2025). https://doi.org/10.1038/s41467-025-67183-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41467-025-67183-9