Injectable eutectogel for high-quality scalp electroencephalogram monitoring

injectable-eutectogel-for-high-quality-scalp-electroencephalogram-monitoring
Injectable eutectogel for high-quality scalp electroencephalogram monitoring

References

  1. Gramann, K., Ferris, D. P., Gwin, J. & Makeig, S. Imaging natural cognition in action. Int. J. Psychophysiol. 91, 22–29 (2014).

    Google Scholar 

  2. Daly, J. J. & Wolpaw, J. R. Brain–computer interfaces in neurological rehabilitation. Lancet Neurol. 7, 1032–1043 (2008).

    Google Scholar 

  3. Thompson, T., Steffert, T., Ros, T., Leach, J. & Gruzelier, J. EEG applications for sport and performance. Methods 45, 279–288 (2008).

    Google Scholar 

  4. Michel, V., Mazzola, L., Lemesle, M. & Vercueil, L. Long-term EEG in adults: sleep-deprived EEG (SDE), ambulatory EEG (Amb-EEG) and long-term video-EEG recording (LTVER). Neurophysiol. Clin. 45, 47–64 (2015).

    Google Scholar 

  5. De Vos, M. & Debener, S. Mobile EEG: towards brain activity monitoring during natural action and cognition. Int. J. Psychophysiol. 91, 1–2 (2014).

    Google Scholar 

  6. Wang, C. et al. On-skin paintable biogel for long-term high-fidelity electroencephalogram recording. Sci. Adv. 8, eabo1396 (2022).

    Google Scholar 

  7. Zheng, K. et al. Machine learning enabled reusable adhesion, entangled network-based hydrogel for long-term, high-fidelity EEG recording and attention assessment. Nano Micro Lett. 17, 281 (2025).

    Google Scholar 

  8. Vanhatalo, S., Alnajjar, A., Nguyen, V. T., Colditz, P. & Fransson, P. Safety of EEG–fMRI recordings in newborn infants at 3T: a study using a baby-size phantom. Clin. Neurophysiol. 125, 941–946 (2014).

    Google Scholar 

  9. Walls-Esquivel, E., Vecchierini, M. F., Héberlé, C. & Wallois, F. Electroencephalography (EEG) recording techniques and artefact detection in early premature babies. Neurophysiol. Clin. 37, 299–309 (2007).

    Google Scholar 

  10. Awal, M. A., Lai, M. M., Azemi, G., Boashash, B. & Colditz, P. B. EEG background features that predict outcome in term neonates with hypoxic ischaemic encephalopathy: a structured review. Clin. Neurophysiol. 127, 285–296 (2016).

    Google Scholar 

  11. Yang, Y. et al. Breathable electronic skins for daily physiological signal monitoring. Nano Micro Lett. 14, 161 (2022).

    Google Scholar 

  12. Li, G.-L., Wu, J.-T., Xia, Y.-H., He, Q.-G. & Jin, H.-G. Review of semi-dry electrodes for EEG recording. J. Neural Eng. 17, 051004 (2020).

    Google Scholar 

  13. Pedrosa, P. et al. Alginate-based hydrogels as an alternative to electrolytic gels for rapid EEG monitoring and easy cleaning procedures. Sens. Actuators B: Chem. 247, 273–283 (2017).

    Google Scholar 

  14. Xu, P. et al. Conductive and elastic bottlebrush elastomers for ultrasoft electronics. Nat. Commun. 14, 623 (2023).

    Google Scholar 

  15. Wang, F. et al. 3D Printed implantable hydrogel bioelectronics for electrophysiological monitoring and electrical modulation. Adv. Funct. Mater. 34, 2314471 (2024).

    Google Scholar 

  16. Li, T., Qi, H., Dong, X., Li, G. & Zhai, W. Highly robust conductive organo-hydrogels with powerful sensing capabilities under large mechanical stress. Adv. Mater. 36, 2304145 (2024).

    Google Scholar 

  17. Zhao, Y. et al. A self-healing electrically conductive organogel composite. Nat. Electron. 6, 206–215 (2023).

    Google Scholar 

  18. Li, G., Wang, S., Li, M. & Duan, Y. Y. Towards real-life EEG applications: novel superporous hydrogel-based semi-dry EEG electrodes enabling automatically ‘charge–discharge’ electrolyte. J. Neural Eng. 18, 046016 (2021).

    Google Scholar 

  19. Alba, N. A., Sclabassi, R. J., Sun, M. & Cui, X. T. Novel hydrogel-based preparation-free EEG electrode. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 415–423 (2010).

    Google Scholar 

  20. Yuk, H., Lu, B. & Zhao, X. Hydrogel bioelectronics. Chem. Soc. Rev. 48, 1642–1667 (2019).

    Google Scholar 

  21. Mo, F., Zhou, P., Lin, S., Zhong, J. & Wang, Y. A review of conductive hydrogel-based wearable temperature sensors. Adv. Healthc. Mater. 13, 2401503 (2024).

    Google Scholar 

  22. Luo, J. et al. MXene-enabled self-adaptive hydrogel interface for active electroencephalogram interactions. ACS Nano. 16, 19373–19384 (2022).

    Google Scholar 

  23. Fan, Y., Deng, C., Cheng, R., Meng, F. & Zhong, Z. In situ forming hydrogels via catalyst-free and bioorthogonal “tetrazole–alkene” photo-click chemistry. Biomacromol. 14, 2814–2821 (2013).

    Google Scholar 

  24. Li, L. et al. Paintable, fast gelation, highly adhesive hydrogels for high-fidelity electrophysiological monitoring wirelessly. Small 21, 2407996 (2024).

    Google Scholar 

  25. Huang, Y. J., Wu, C. Y., Wong, A. M. K. & Lin, B. S. Novel active comb-shaped dry electrode for EEG measurement in hairy site. IEEE Trans. Biomed. Eng. 62, 256–263 (2015).

    Google Scholar 

  26. Norton, J. J. S. et al. Soft, curved electrode systems capable of integration on the auricle as a persistent brain–computer interface. Proc. Natl. Acad. Sci. 112, 3920–3925 (2015).

    Google Scholar 

  27. Zhang, Y., Wang, Y., Guan, Y. & Zhang, Y. Peptide-enhanced tough, resilient and adhesive eutectogels for highly reliable strain/pressure sensing under extreme conditions. Nat. Commun. 13, 6671 (2022).

    Google Scholar 

  28. Owyeung, R., Zeng, W. & Sonkusale, S. Eutectogel electrodes for long-term biosignal monitoring. In 2022 IEEE Sens (IEEE, 2022).

  29. Zhong, Y. et al. Eutectogels as a semisolid electrolyte for organic electrochemical transistors. Chem. Mater. 36, 1841–1854 (2024).

    Google Scholar 

  30. Li, Y. et al. Fully degradable protein gels with superior mechanical properties and durability: regulation of hydrogen bond donors. Adv. Mater. 37, 2506577 (2025).

    Google Scholar 

  31. Luo, J. et al. On-skin paintable water-resistant biohydrogel for wearable bioelectronics. Adv. Funct. Mater. 34, 2400884 (2024).

    Google Scholar 

  32. Yang, Z. et al. An on-skin-formed silk protein bioelectrode for conformable and robust electrophysiological interface. Adv. Funct. Mater. 34, 2402608 (2024).

    Google Scholar 

  33. Chen, J. X. M. et al. Conductive bio-based hydrogel for wearable electrodes via direct ink writing on skin. Adv. Funct. Mater. 34, 2403721 (2024).

    Google Scholar 

  34. Lan, L. et al. Skin-inspired all-natural biogel for bioadhesive interface. Adv. Mater. 36, 2401151 (2024).

    Google Scholar 

  35. Hsieh, J.-C. et al. Design of an injectable, self-adhesive, and highly stable hydrogel electrode for sleep recording. Device 2, 100182 (2024).

    Google Scholar 

  36. Niu, W., Tian, Q., Liu, Z. & Liu, X. Solvent-free and fkin-like supramolecular ion-conductive elastomers with versatile processability for multifunctional ionic tattoos and on-skin bioelectronics. Adv. Mater. 35, 2304157 (2023).

    Google Scholar 

  37. Kishore, R. A., Nozariasbmarz, A., Poudel, B., Sanghadasa, M. & Priya, S. Ultra-high performance wearable thermoelectric coolers with less materials. Nat. Commun. 10, 1765 (2019).

    Google Scholar 

  38. Baumgartner, M. et al. Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nat. Mater. 19, 1102–1109 (2020).

    Google Scholar 

  39. Chen, Y. et al. Gelatin-based metamaterial hydrogel films with high conformality for ultra-soft tissue monitoring. Nano-Micro Lett. 16, 34 (2023).

    Google Scholar 

  40. Han, L. et al. Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance. Adv. Funct. Mater. 28, 1704195 (2018).

    Google Scholar 

  41. Jin, Q. et al. Quadruple H-bonding and polyrotaxanes dual cross-linking supramolecular elastomer for high toughness and self-healing conductors. Angew. Chem. Int. Ed. 62, e202305282 (2023).

    Google Scholar 

  42. Parker, N. G. & Povey, M. J. W. Ultrasonic study of the gelation of gelatin: phase diagram, hysteresis and kinetics. Food Hydrocoll. 26, 99–107 (2012).

    Google Scholar 

  43. Hoang Thi, T. T. et al. Supramolecular cyclodextrin supplements to improve the tissue adhesion strength of gelatin bioglues. ACS Macro Lett. 6, 83–88 (2017).

    Google Scholar 

  44. Li, X. et al. Body temperature-triggered adhesive ionic conductive hydrogels for bioelectrical signal monitoring. Chem. Eng. J. 498, 155195 (2024).

    Google Scholar 

  45. Moufawad, T. et al. First evidence of cyclodextrin inclusion complexes in a deep eutectic solvent. ACS Sustain. Chem. Eng. 7, 6345–6351 (2019).

    Google Scholar 

  46. Dong, J. et al. Viscoelastic adhesive, super-conformable, and semi-flowable liquid metal eutectogels for high-fidelity electrophysiological monitoring. ACS Appl. Mater. Interfaces 16, 34732–34742 (2024).

    Google Scholar 

  47. Li, T. et al. Robust skin-integrated conductive biogel for high-fidelity detection under mechanical stress. Nat. Commun. 16, 88 (2025).

    Google Scholar 

  48. Han, Q. et al. Hydrogel nanoarchitectonics of a flexible and self-adhesive electrode for long-term wireless electroencephalogram recording and high-accuracy sustained attention evaluation. Adv. Mater. 35, 2209606 (2023).

    Google Scholar 

  49. Scalco de Vasconcelos, L. et al. On-scalp printing of personalized electroencephalography e-tattoos. Cell Biomater. 1, 100004 (2025).

  50. Rakowska, M., Abdellahi, M. E. A., Bagrowska, P., Navarrete, M. & Lewis, P. A. Long term effects of cueing procedural memory reactivation during NREM sleep. Neuroimage 244, 118573 (2021).

    Google Scholar 

  51. Sajidah, H., Khairunnisa, S. & Nabila, C. The effect of relaxing a deep breath on anxiety levels. KESANS Int. J. Health Sci. 1, 88–95 (2021).

    Google Scholar 

  52. Anusha, A. S. et al. Brain-scale theta band functional connectome as signature of slow breathing and breath-hold phases. Comput. Biol. Med. 184, 109435 (2025).

    Google Scholar 

  53. Klimesch, W. et al. Alpha and beta band power changes in normal and dyslexic children. Clin. Neurophysiol. 112, 1186–1195 (2001).

    Google Scholar 

  54. Vitu, F., Kapoula, Z., Lancelin, D. & Lavigne, F. Eye movements in reading isolated words: evidence for strong biases towards the center of the screen. Vis. Res. 44, 321–338 (2004).

    Google Scholar 

  55. Ding, Y., Hu, X., Xia, Z., Liu, Y. J. & Zhang, D. Inter-Brain EEG feature extraction and analysis for continuous implicit emotion tagging during video watching. IEEE Trans. Affect. Comput. 12, 92–102 (2021).

    Google Scholar 

  56. Walker, J. L. Changes in EEG rhythms during television viewing: preliminary comparisons with reading and other tasks. Percept. Mot. Skills 51, 255–261 (1980).

    Google Scholar 

  57. Pfurtscheller, G. & Lopes da Silva, F. H. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110, 1842–1857 (1999).

    Google Scholar 

  58. Wagner, J. et al. Level of participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG rhythms in able-bodied subjects. NeuroImage 63, 1203–1211 (2012).

    Google Scholar 

  59. Van Son, D. et al. Frontal EEG theta/beta ratio during mind wandering episodes. Biol. Psychol. 140, 19–27 (2019).

    Google Scholar 

  60. Huh, H. et al. A wireless forehead e-tattoo for mental workload estimation. Device 3, 100781 (2025).

  61. Ngoc, N. N., Nguyen, C. D. & Duc, T. V. Visualizing brain signals in mental calculation by using Electroencephalography Topographic Map Animation with Independent component analysis perspectives. J. Phys. Conf. Ser. 2949, 012013 (2025).

    Google Scholar 

Download references