References
-
Chambers, J. E. et al. Human and ecological risk assessment of a crop protection chemical: a case study with the Azole fungicide Epoxiconazole. Crit. Rev. Toxicol. 44, 176–210 (2014).
-
Kilani, J. & Fillinger, S. Phenylpyrroles,. 30 years, two molecules and (nearly) no resistance. Front. Microbiol. Volume 7, 2016 (2016).
-
Bhagat, J., Singh, N., Nishimura, N. & Shimada, Y. A comprehensive review on environmental toxicity of Azole compounds to fish. Chemosphere 262, 128335 (2021).
-
Alexandrino, D. A. M., Almeida, C. M. R., Mucha, A. P. & Carvalho, M. F. Revisiting pesticide pollution: the case of fluorinated pesticides. Environ. Pollut. 292, 118315 (2022).
-
Maienfisch, P. & Hall, R. The importance of fluorine in the life science industry. CHIMIA Int. J. Chem. 58, 93–99 (2004).
-
Silva, V. et al. Pesticide residues in European agricultural soils – A hidden reality unfolded. Sci. Total Environ. 653, 1532–1545 (2019).
-
Bermúdez-Couso, A. et al. Seasonal distributions of fungicides in soils and sediments of a small river basin partially devoted to vineyards. Water Res. 41, 4515–4525 (2007).
-
Elgueta, S. et al. Pesticide residues and health risk assessment in tomatoes and lettuces from farms of metropolitan region Chile. Molecules 25, 355 (2020).
-
Galani, J. H. Y. et al. Evaluation of 99 pesticide residues in major agricultural products from the Western highlands zone of Cameroon using quechers method extraction and LC-MS/MS and GC-ECD analyses. Foods 7, 184 (2018).
-
Taxvig, C. et al. Endocrine-Disrupting activities in vivo of the fungicides Tebuconazole and Epoxiconazole. Toxicol. Sci. 100, 464–473 (2007).
-
Gottardi, M., Birch, M. R., Dalhoff, K. & Cedergreen, N. The effects of Epoxiconazole and α-cypermethrin on daphnia magna growth, reproduction, and offspring size. Environ. Toxicol. Chem. 36, 2155–2166 (2017).
-
Wang, Y. et al. Combined toxic effects of Fludioxonil and Triadimefon on embryonic development of zebrafish (Danio rerio). Environ. Pollut. 260, 114105 (2020).
-
European Union. Commission Regulation (EU) 2023/128 of 18 January 2023 Amending Annexes II, III and V to Regulation (EC) No 396/2005 of the European Parliament and of the Council as Regards Maximum Residue Levels for Benalaxyl, Bromoxynil, Chlorsulfuron, Epoxiconazole and Fenamiphos in or on Certain Products. (2023). http://data.europa.eu/eli/reg/2023/128/oj, European Union.
-
Lewis, K. A., Tzilivakis, J., Warner, D. J. & Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assessment: Int. J. 22, 1050–1064 (2016).
-
Fenoll, J., Ruiz, E., Hellín, P., Flores, P. & Navarro, S. Heterogeneous photocatalytic oxidation of cyprodinil and Fludioxonil in leaching water under solar irradiation. Chemosphere 85, 1262–1268 (2011).
-
Marinozzi, M. et al. The dissipation of three fungicides in a biobed organic substrate and their impact on the structure and activity of the microbial community. Environ. Sci. Pollut. Res. 20, 2546–2555 (2013).
-
Wu, H. et al. Co-metabolic enhancement of 1H-1,2,4-triazole biodegradation through nitrification. Bioresour Technol. 271, 236–243 (2019).
-
Wu, H. et al. Biodegradation mechanism of 1H-1,2,4-triazole by a newly isolated strain Shinella sp. NJUST26. Sci. Rep. 6, 29675 (2016).
-
Johnson, B. M., Shu, Y. Z., Zhuo, X. & Meanwell, N. A. Metabolic and pharmaceutical aspects of fluorinated compounds. J. Med. Chem. 63, 6315–6386 (2020).
-
Alexandrino, D. A. M., Mucha, A. P., Almeida, C. M. R. & Carvalho, M. F. Microbial degradation of two highly persistent fluorinated fungicides – epoxiconazole and Fludioxonil. J. Hazard. Mater. 394, 122545 (2020).
-
Mavriou, Ζ., Alexandropoulou, I., Melidis, P., Karpouzas, D. G. & Ntougias, S. Bioprocess performance, transformation pathway, and bacterial community dynamics in an immobilized cell bioreactor treating fludioxonil-contaminated wastewater under microaerophilic conditions. Environ. Sci. Pollut. Res. 29, 29597–29612 (2022).
-
Du, P. et al. Different biodegradation potential and the impacted soil functions of Epoxiconazole in two soils. J. Hazard. Mater. 422, 126787 (2022).
-
Alexandrino, D. A. M. Microbial Degradation of Persistent Fluorinated pesticides – understanding the Microbial Dynamics and Catabolic Pathways Associated with the Biodegradation of Epoxiconazole and Fludioxonil (University of Porto, 2022).
-
Wishart, D. S. et al. BioTransformer 3.0—a web server for accurately predicting metabolic transformation products. Nucleic Acids Res. 50, W115–W123 (2022).
-
Hafner, J. et al. Advancements in biotransformation pathway prediction: enhancements, datasets, and novel functionalities in envipath. J. Cheminform. 16, 93 (2024).
-
Wicker, J. et al. enviPath – The environmental contaminant biotransformation pathway resource. Nucleic Acids Res. 44, D502–D508 (2016).
-
Kim, S. et al. PubChem 2025 update. Nucleic Acids Res. 53, D1516–D1525 (2025).
-
Moriya, Y. et al. Identification of enzyme genes using chemical structure alignments of Substrate–Product pairs. J. Chem. Inf. Model. 56, 510–516 (2016).
-
Gowda, H. et al. Interactive XCMS online: simplifying advanced metabolomic data processing and subsequent statistical analyses. Anal. Chem. 86, 6931–6939 (2014).
-
Arkin, A. P. et al. KBase: the united States department of energy systems biology knowledgebase. Nat. Biotechnol. 36, 566–569 (2018).
-
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
-
Babraham, B. F. A quality control tool for high throughput sequence data.
-
Menzel, P., Ng, K. L. & Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 11257 (2016).
-
Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. MetaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).
-
Shaffer, M. et al. DRAM for distilling microbial metabolism to automate the curation of Microbiome function. Nucleic Acids Res. 48, 8883–8900 (2020).
-
Wiśniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample Preparation method for proteome analysis. Nat. Methods. 6, 359–362 (2009).
-
Campos, A. et al. Shotgun proteomics to unravel marine mussel (Mytilus edulis) response to long-term exposure to low salinity and propranolol in a Baltic sea microcosm. J. Proteom. 137, 97–106 (2016).
-
Valério, E. et al. New insights in Saccharomyces cerevisiae response to the cyanotoxin microcystin-LR, revealed by proteomics and gene expression. Toxins (Basel). 12, 667 (2020).
-
Boutet, E. et al. Springer New York, New York, NY,. UniProtKB/Swiss-Prot, the Manually Annotated Section of the UniProt KnowledgeBase: How to Use the Entry View. in Plant Bioinformatics: Methods and Protocols (ed. Edwards, D.) 23–54 https://doi.org/10.1007/978-1-4939-3167-5_2(2016).
-
Feng, Z., Fang, P., Zheng, H. & Zhang, X. DEP2: an upgraded comprehensive analysis toolkit for quantitative proteomics data. Bioinformatics 39, btad526 (2023).
-
Bygd, M. D., Aukema, K. G., Richman, J. E. & Wackett, L. P. Unexpected Mechanism of Biodegradation and Defluorination of 2,2-Difluoro-1,3-Benzodioxole by Pseudomonas putida F1. mBio 122, e03001–e03021 (2021).
-
Wang, Y. et al. Isolation, characterization and application of the epoxiconazole-degrading strain Pseudomonas sp. F1 in a soil-vegetable system. Chemosphere 305, 135463 (2022).
-
Dunn, M. F., Niks, D., Ngo, H., Barends, T. R. M. & Schlichting, I. Tryptophan synthase: the workings of a channeling nanomachine. Trends Biochem. Sci. 33, 254–264 (2008).
-
Agostini, F. et al. Multiomics analysis provides insight into the laboratory evolution of Escherichia coli toward the metabolic usage of fluorinated Indoles. ACS Cent. Sci. 7, 81–92 (2021).
-
Treiber-Kleinke, C., Berger, A. A., Adrian, L., Budisa, N. & Koksch, B. Escherichia coli adapts metabolically to 6- and 7-fluoroindole, enabling proteome-wide fluorotryptophan substitution. Front. Synth. Biol. 1, 2023 (2024).
-
Alexandrino, D. A. M., Mucha, A. P., Tomasino, M. P., Almeida, C. M. R. & Carvalho, M. F. Combining Culture-Dependent and independent approaches for the optimization of Epoxiconazole and Fludioxonil-Degrading bacterial consortia. Microorganisms 9, 2109 (2021).
