Insights into the biodegradation of two persistent fluorinated fungicides by coupling metabolic modelling with metaproteogenomics

insights-into-the-biodegradation-of-two-persistent-fluorinated-fungicides-by-coupling-metabolic-modelling-with-metaproteogenomics
Insights into the biodegradation of two persistent fluorinated fungicides by coupling metabolic modelling with metaproteogenomics

References

  1. Chambers, J. E. et al. Human and ecological risk assessment of a crop protection chemical: a case study with the Azole fungicide Epoxiconazole. Crit. Rev. Toxicol. 44, 176–210 (2014).

    Google Scholar 

  2. Kilani, J. & Fillinger, S. Phenylpyrroles,. 30 years, two molecules and (nearly) no resistance. Front. Microbiol. Volume 7, 2016 (2016).

    Google Scholar 

  3. Bhagat, J., Singh, N., Nishimura, N. & Shimada, Y. A comprehensive review on environmental toxicity of Azole compounds to fish. Chemosphere 262, 128335 (2021).

    Google Scholar 

  4. Alexandrino, D. A. M., Almeida, C. M. R., Mucha, A. P. & Carvalho, M. F. Revisiting pesticide pollution: the case of fluorinated pesticides. Environ. Pollut. 292, 118315 (2022).

    Google Scholar 

  5. Maienfisch, P. & Hall, R. The importance of fluorine in the life science industry. CHIMIA Int. J. Chem. 58, 93–99 (2004).

    Google Scholar 

  6. Silva, V. et al. Pesticide residues in European agricultural soils – A hidden reality unfolded. Sci. Total Environ. 653, 1532–1545 (2019).

    Google Scholar 

  7. Bermúdez-Couso, A. et al. Seasonal distributions of fungicides in soils and sediments of a small river basin partially devoted to vineyards. Water Res. 41, 4515–4525 (2007).

    Google Scholar 

  8. Elgueta, S. et al. Pesticide residues and health risk assessment in tomatoes and lettuces from farms of metropolitan region Chile. Molecules 25, 355 (2020).

    Google Scholar 

  9. Galani, J. H. Y. et al. Evaluation of 99 pesticide residues in major agricultural products from the Western highlands zone of Cameroon using quechers method extraction and LC-MS/MS and GC-ECD analyses. Foods 7, 184 (2018).

    Google Scholar 

  10. Taxvig, C. et al. Endocrine-Disrupting activities in vivo of the fungicides Tebuconazole and Epoxiconazole. Toxicol. Sci. 100, 464–473 (2007).

    Google Scholar 

  11. Gottardi, M., Birch, M. R., Dalhoff, K. & Cedergreen, N. The effects of Epoxiconazole and α-cypermethrin on daphnia magna growth, reproduction, and offspring size. Environ. Toxicol. Chem. 36, 2155–2166 (2017).

    Google Scholar 

  12. Wang, Y. et al. Combined toxic effects of Fludioxonil and Triadimefon on embryonic development of zebrafish (Danio rerio). Environ. Pollut. 260, 114105 (2020).

    Google Scholar 

  13. European Union. Commission Regulation (EU) 2023/128 of 18 January 2023 Amending Annexes II, III and V to Regulation (EC) No 396/2005 of the European Parliament and of the Council as Regards Maximum Residue Levels for Benalaxyl, Bromoxynil, Chlorsulfuron, Epoxiconazole and Fenamiphos in or on Certain Products. (2023). http://data.europa.eu/eli/reg/2023/128/oj, European Union.

  14. Lewis, K. A., Tzilivakis, J., Warner, D. J. & Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assessment: Int. J. 22, 1050–1064 (2016).

    Google Scholar 

  15. Fenoll, J., Ruiz, E., Hellín, P., Flores, P. & Navarro, S. Heterogeneous photocatalytic oxidation of cyprodinil and Fludioxonil in leaching water under solar irradiation. Chemosphere 85, 1262–1268 (2011).

    Google Scholar 

  16. Marinozzi, M. et al. The dissipation of three fungicides in a biobed organic substrate and their impact on the structure and activity of the microbial community. Environ. Sci. Pollut. Res. 20, 2546–2555 (2013).

    Google Scholar 

  17. Wu, H. et al. Co-metabolic enhancement of 1H-1,2,4-triazole biodegradation through nitrification. Bioresour Technol. 271, 236–243 (2019).

    Google Scholar 

  18. Wu, H. et al. Biodegradation mechanism of 1H-1,2,4-triazole by a newly isolated strain Shinella sp. NJUST26. Sci. Rep. 6, 29675 (2016).

    Google Scholar 

  19. Johnson, B. M., Shu, Y. Z., Zhuo, X. & Meanwell, N. A. Metabolic and pharmaceutical aspects of fluorinated compounds. J. Med. Chem. 63, 6315–6386 (2020).

    Google Scholar 

  20. Alexandrino, D. A. M., Mucha, A. P., Almeida, C. M. R. & Carvalho, M. F. Microbial degradation of two highly persistent fluorinated fungicides – epoxiconazole and Fludioxonil. J. Hazard. Mater. 394, 122545 (2020).

    Google Scholar 

  21. Mavriou, Ζ., Alexandropoulou, I., Melidis, P., Karpouzas, D. G. & Ntougias, S. Bioprocess performance, transformation pathway, and bacterial community dynamics in an immobilized cell bioreactor treating fludioxonil-contaminated wastewater under microaerophilic conditions. Environ. Sci. Pollut. Res. 29, 29597–29612 (2022).

    Google Scholar 

  22. Du, P. et al. Different biodegradation potential and the impacted soil functions of Epoxiconazole in two soils. J. Hazard. Mater. 422, 126787 (2022).

    Google Scholar 

  23. Alexandrino, D. A. M. Microbial Degradation of Persistent Fluorinated pesticides – understanding the Microbial Dynamics and Catabolic Pathways Associated with the Biodegradation of Epoxiconazole and Fludioxonil (University of Porto, 2022).

  24. Wishart, D. S. et al. BioTransformer 3.0—a web server for accurately predicting metabolic transformation products. Nucleic Acids Res. 50, W115–W123 (2022).

    Google Scholar 

  25. Hafner, J. et al. Advancements in biotransformation pathway prediction: enhancements, datasets, and novel functionalities in envipath. J. Cheminform. 16, 93 (2024).

    Google Scholar 

  26. Wicker, J. et al. enviPath – The environmental contaminant biotransformation pathway resource. Nucleic Acids Res. 44, D502–D508 (2016).

    Google Scholar 

  27. Kim, S. et al. PubChem 2025 update. Nucleic Acids Res. 53, D1516–D1525 (2025).

    Google Scholar 

  28. Moriya, Y. et al. Identification of enzyme genes using chemical structure alignments of Substrate–Product pairs. J. Chem. Inf. Model. 56, 510–516 (2016).

    Google Scholar 

  29. Gowda, H. et al. Interactive XCMS online: simplifying advanced metabolomic data processing and subsequent statistical analyses. Anal. Chem. 86, 6931–6939 (2014).

    Google Scholar 

  30. Arkin, A. P. et al. KBase: the united States department of energy systems biology knowledgebase. Nat. Biotechnol. 36, 566–569 (2018).

    Google Scholar 

  31. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Google Scholar 

  32. Babraham, B. F. A quality control tool for high throughput sequence data.

  33. Menzel, P., Ng, K. L. & Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 11257 (2016).

    Google Scholar 

  34. Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. MetaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).

    Google Scholar 

  35. Shaffer, M. et al. DRAM for distilling microbial metabolism to automate the curation of Microbiome function. Nucleic Acids Res. 48, 8883–8900 (2020).

    Google Scholar 

  36. Wiśniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample Preparation method for proteome analysis. Nat. Methods. 6, 359–362 (2009).

    Google Scholar 

  37. Campos, A. et al. Shotgun proteomics to unravel marine mussel (Mytilus edulis) response to long-term exposure to low salinity and propranolol in a Baltic sea microcosm. J. Proteom. 137, 97–106 (2016).

    Google Scholar 

  38. Valério, E. et al. New insights in Saccharomyces cerevisiae response to the cyanotoxin microcystin-LR, revealed by proteomics and gene expression. Toxins (Basel). 12, 667 (2020).

    Google Scholar 

  39. Boutet, E. et al. Springer New York, New York, NY,. UniProtKB/Swiss-Prot, the Manually Annotated Section of the UniProt KnowledgeBase: How to Use the Entry View. in Plant Bioinformatics: Methods and Protocols (ed. Edwards, D.) 23–54 https://doi.org/10.1007/978-1-4939-3167-5_2(2016).

  40. Feng, Z., Fang, P., Zheng, H. & Zhang, X. DEP2: an upgraded comprehensive analysis toolkit for quantitative proteomics data. Bioinformatics 39, btad526 (2023).

    Google Scholar 

  41. Bygd, M. D., Aukema, K. G., Richman, J. E. & Wackett, L. P. Unexpected Mechanism of Biodegradation and Defluorination of 2,2-Difluoro-1,3-Benzodioxole by Pseudomonas putida F1. mBio 122, e03001–e03021 (2021).

    Google Scholar 

  42. Wang, Y. et al. Isolation, characterization and application of the epoxiconazole-degrading strain Pseudomonas sp. F1 in a soil-vegetable system. Chemosphere 305, 135463 (2022).

    Google Scholar 

  43. Dunn, M. F., Niks, D., Ngo, H., Barends, T. R. M. & Schlichting, I. Tryptophan synthase: the workings of a channeling nanomachine. Trends Biochem. Sci. 33, 254–264 (2008).

    Google Scholar 

  44. Agostini, F. et al. Multiomics analysis provides insight into the laboratory evolution of Escherichia coli toward the metabolic usage of fluorinated Indoles. ACS Cent. Sci. 7, 81–92 (2021).

    Google Scholar 

  45. Treiber-Kleinke, C., Berger, A. A., Adrian, L., Budisa, N. & Koksch, B. Escherichia coli adapts metabolically to 6- and 7-fluoroindole, enabling proteome-wide fluorotryptophan substitution. Front. Synth. Biol. 1, 2023 (2024).

    Google Scholar 

  46. Alexandrino, D. A. M., Mucha, A. P., Tomasino, M. P., Almeida, C. M. R. & Carvalho, M. F. Combining Culture-Dependent and independent approaches for the optimization of Epoxiconazole and Fludioxonil-Degrading bacterial consortia. Microorganisms 9, 2109 (2021).

    Google Scholar 

Download references