Integrated anaerobic membrane bioreactor-yeast biorefinery for co-production of hydrogen, volatile fatty acids, and microbial oil from food waste

integrated-anaerobic-membrane-bioreactor-yeast-biorefinery-for-co-production-of-hydrogen,-volatile-fatty-acids,-and-microbial-oil-from-food-waste
Integrated anaerobic membrane bioreactor-yeast biorefinery for co-production of hydrogen, volatile fatty acids, and microbial oil from food waste

References

  1. Amicarelli, V., Lagioia, G. & Bux, C. Global warming potential of food waste through the life cycle assessment: An analytical review. Environ. Impact Assess. Rev. 91, 106677 (2021).

    Google Scholar 

  2. Shurson, G. C., Dierenfeld, E. S. & Dou, Z. Rules are meant to be broken – Rethinking the regulations on the use of food waste as animal feed. Resour. Conserv. Recycl. 199, 107273 (2023).

    Google Scholar 

  3. Yang, Y., Chen, D., Hu, S. & Chen, X. Estimation and analysis of municipal food waste and resource utilization potential in China. Environ. Sci. Pollut. Res. 27, 40633–40642 (2020).

    Google Scholar 

  4. Gottardo, M. et al. Boosting butyrate and hydrogen production in acidogenic fermentation of food waste and sewage sludge mixture: a pilot scale demonstration. J. Clean. Prod. 404, 136919 (2023).

    Google Scholar 

  5. Van Ginkel, S., Sung, S. & Lay, J. J. biohydrogen production as a function of ph and substrate concentration. Environ. Sci. Technol. 35, 4726–4730 (2001).

    Google Scholar 

  6. Zhu, Y. & Yang, S. T. Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum. J. Biotechnol. 110, 143–157 (2004).

    Google Scholar 

  7. Zagrodnik, R., Duber, A. & Seifert, K. Dark-fermentative hydrogen production from synthetic lignocellulose hydrolysate by a mixed bacterial culture: The relationship between hydraulic retention time and pH conditions. Bioresour. Technol. 358, 127309 (2022).

    Google Scholar 

  8. Park, G. W. et al. Improving hydrogen production by pH adjustment in pressurized gas fermentation. Bioresour. Technol. 346, 126605 (2022).

    Google Scholar 

  9. Capson-Tojo, G. et al. Accumulation of propionic acid during consecutive batch anaerobic digestion of commercial food waste. Bioresour. Technol. 245, 724–733 (2017).

    Google Scholar 

  10. Pervez, M. N. et al. Factors influencing pressure-driven membrane-assisted volatile fatty acids recovery and purification-A review. Sci. Tot. Environ. 817, 152993 (2022).

    Google Scholar 

  11. Pervez, M. N. et al. Double-stage membrane-assisted anaerobic digestion process intensification for production and recovery of volatile fatty acids from food waste. Sci. Tot. Environ. 825, 154084 (2022).

    Google Scholar 

  12. Barros, K. S. et al. Recovery and fractionation of volatile fatty acids from fermented solutions by electrodialysis: electrochemical characterization of anion-exchange membranes. J. Environ. Chem. Eng. 12, 114457 (2024).

    Google Scholar 

  13. Speer, D. et al. Enhanced, continuous, liquid-liquid extraction and in-situ separation of volatile fatty acids from fermentation broth. Sep. Purif. Technol. 327, 124810 (2023).

    Google Scholar 

  14. Aydin, S., Yesil, H. & Tugtas, A. E. Recovery of mixed volatile fatty acids from anaerobically fermented organic wastes by vapor permeation membrane contactors. Bioresour. Technol. 250, 548–555 (2018).

    Google Scholar 

  15. Parchami, M. et al. Membrane bioreactor assisted volatile fatty acids production from agro-industrial residues for ruminant feed application. Waste Manage. 170, 62–74 (2023).

    Google Scholar 

  16. Jomnonkhaow, U. et al. Membrane bioreactor-assisted volatile fatty acids production and in situ recovery from cow manure. Bioresour. Technol. 321, 124456 (2021).

    Google Scholar 

  17. Traina, F., Capodici, M., Torregrossa, M., Viviani, G. & Corsino, S. F. PHA and EPS production from industrial wastewater by conventional activated sludge, membrane bioreactor and aerobic granular sludge technologies: A comprehensive comparison. Chemosphere 355, 141768 (2024).

    Google Scholar 

  18. Uwineza, C. et al. Cultivation of edible filamentous fungus Aspergillus oryzae on volatile fatty acids derived from anaerobic digestion of food waste and cow manure. Bioresour. Technol. 337, 125410 (2021).

    Google Scholar 

  19. Llamas, M., Dourou, M., González-Fernández, C., Aggelis, G. & Tomás-Pejó, E. Screening of oleaginous yeasts for lipid production using volatile fatty acids as substrate. Biomass Bioenergy 138, 105553 (2020).

    Google Scholar 

  20. Shin, S., Go, J. H., Moon, M. & Park, G. W. Automatic fed-batch cultivation enhances microbial lipid production from volatile fatty acids. Energies 16, 1996 (2023).

    Google Scholar 

  21. Lei, Y. et al. A review of lipid accumulation by oleaginous yeasts: Culture mode. Sci. Tot. Environ. 919, 170385 (2024).

    Google Scholar 

  22. Soccol, C. R. et al. Pilot scale biodiesel production from microbial oil of Rhodosporidium toruloides DEBB 5533 using sugarcane juice: Performance in diesel engine and preliminary economic study. Bioresour. Technol. 223, 259–268 (2017).

    Google Scholar 

  23. Carrillo-Verástegui, K. A. et al. Biohydrogen potential assessment of Opuntia spp.: Effect of inoculum-to-substrate ratio and residual biomass evaluation. Int. J. Hydrog. Energy 47, 30085–30096 (2022).

    Google Scholar 

  24. Trad, Z. et al. Development of a submerged anaerobic membrane bioreactor for concurrent extraction of volatile fatty acids and biohydrogen production. Bioresour. Technol. 196, 290–300 (2015).

    Google Scholar 

  25. Wainaina, S., Parchami, M., Mahboubi, A., Horváth, I. S. & Taherzadeh, M. J. Food waste-derived volatile fatty acids platform using an immersed membrane bioreactor. Bioresour. Technol. 274, 329–334 (2019).

    Google Scholar 

  26. Li, M., Liu, G. L., Chi, Z. & Chi, Z. M. Single cell oil production from hydrolysate of cassava starch by marine-derived yeast Rhodotorula mucilaginosa TJY15a. Biomass Bioenergy 34, 101–107 (2010).

    Google Scholar 

  27. APHA, A. WEF. Standard Methods for the Examination of Water and Wastewater. (Washington, DC American Public Health Association, American Water Works Association, Water Environment Federation, 2012).

  28. Nualsri, C., Kongjan, P. & Reungsang, A. Direct integration of CSTR-UASB reactors for two-stage hydrogen and methane production from sugarcane syrup. Int. J. Hydrog. Energy 41, 17884–17895 (2016).

    Google Scholar 

  29. Owen, W. F., Stuckey, D. C., Healy, J. B., Young, L. Y. & McCarty, P. L. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res. 13, 485–492 (1979).

    Google Scholar 

  30. Sitthikitpanya, S., Reungsang, A. & Prasertsan, P. Two-stage thermophilic bio-hydrogen and methane production from lime-pretreated oil palm trunk by simultaneous saccharification and fermentation. Int. J. Hydrog. Energy 43, 4284–4293 (2018).

    Google Scholar 

  31. Byreddy, A. R., Gupta, A., Barrow, C. J. & Puri, M. A quick colorimetric method for total lipid quantification in microalgae. J. Microbiol. Methods 125, 28–32 (2016).

    Google Scholar 

  32. Asunis, F. et al. Dark fermentative volatile fatty acids production from food waste: A review of the potential central role in waste biorefineries. Waste Manage. Res. 40, 1571–1593 (2022).

    Google Scholar 

  33. Strazzera, G., Battista, F., Tonanzi, B., Rossetti, S. & Bolzonella, D. Optimization of short chain volatile fatty acids production from household food waste for biorefinery applications. Environ. Technol. Innov. 23, 101562 (2021).

    Google Scholar 

  34. Feng, K., Li, H. & Zheng, C. Shifting product spectrum by pH adjustment during long-term continuous anaerobic fermentation of food waste. Bioresour. Technol. 270, 180–188 (2018).

    Google Scholar 

  35. García-Depraect, O., Rene, E. R., Diaz-Cruces, V. F. & León-Becerril, E. Effect of process parameters on enhanced biohydrogen production from tequila vinasse via the lactate-acetate pathway. Bioresour. Technol. 273, 618–626 (2019).

    Google Scholar 

  36. Gonçalves, M. J., González-Fernández, C. & Greses, S. Long hydraulic retention time mediates stable volatile fatty acids production against slight pH oscillations. Waste Manage. 176, 140–148 (2024).

    Google Scholar 

  37. Yu, P., Tu, W., Wu, M., Zhang, Z. & Wang, H. Pilot-scale fermentation of urban food waste for volatile fatty acids production: The importance of pH. Bioresour. Technol. 332, 125116 (2021).

    Google Scholar 

  38. Asunis, F. et al. Control of fermentation duration and pH to orient biochemicals and biofuels production from cheese whey. Bioresour. Technol. 289, 121722 (2019).

    Google Scholar 

  39. Jankowska, E., Duber, A., Chwialkowska, J., Stodolny, M. & Oleskowicz-Popiel, P. Conversion of organic waste into volatile fatty acids – The influence of process operating parameters. Chem. Eng. J. 345, 395–403 (2018).

    Google Scholar 

  40. Lu, Y., Zhang, Q., Wang, X., Zhou, X. & Zhu, J. Effect of pH on volatile fatty acid production from anaerobic digestion of potato peel waste. Bioresour. Technol. 316, 123851 (2020).

    Google Scholar 

  41. Nathao, C., Sirisukpoka, U. & Pisutpaisal, N. Production of hydrogen and methane by one and two stage fermentation of food waste. Int. J. Hydrog. Energy 38, 15764–15769 (2013).

    Google Scholar 

  42. Soomro, A. F., Ni, Z., Ying, L. & Liu, J. The effect of ISR on OFMSW during acidogenic fermentation for the production of AD precursor: kinetics and synergies. RSC Adv. 9, 18147–18156 (2019).

    Google Scholar 

  43. Tian, L., Pan, L. & Wang, L. Effect of inoculum pretreatment and substrate/inoculum ratio on acidogenic fermentation of chemically enhanced primary treatment sludge. Sustainability 16, 3347 (2024).

    Google Scholar 

  44. Guellout, Z. et al. Dark fermentative biohydrogen production from vinicultural biomass without exogenous inoculum in a semi-batch reactor: A kinetic study. J. Environ. Manage. 305, 114393 (2022).

    Google Scholar 

  45. Gazzola, G. et al. Biorefining food waste through the anaerobic conversion of endogenous lactate into caproate: A fragile balance between microbial substrate utilization and product inhibition. Waste Manage. 150, 328–338 (2022).

    Google Scholar 

  46. Tayou, L. N. et al. Acidogenic fermentation of food waste and sewage sludge mixture: Effect of operating parameters on process performance and safety aspects. Process Saf. Environ. Prot. 163, 158–166 (2022).

    Google Scholar 

  47. Gottardo, M., Adele Tuci, G., Pavan, P., Dosta, J. & Valentino, F. Short and medium chain organic acids production from hydrolyzed food waste: technical–economic evaluation and insight into the product’s quality. Chem. Eng. Sci. 284, 119539 (2024).

    Google Scholar 

  48. Xiao, X. et al. Volatile fatty acids production from kitchen waste slurry using anaerobic membrane bioreactor via alkaline fermentation with high salinity: Evaluation on process performance and microbial succession. Bioresour. Technol. 399, 130576 (2024).

    Google Scholar 

  49. Wang, Z. et al. Short-chain carboxylate continuous production from food waste with in situ extraction: Novel design to reduce chemical input for pH control and alleviate membrane fouling. J. Environ. Chem. Eng. 12, 112554 (2024).

    Google Scholar 

  50. Parchami, M., De Wever, H., Taherzadeh, M. J. & Mahboubi, A. Production of volatile fatty acids from agro-food residues for ruminant feed inclusion using pilot-scale membrane bioreactor. Environ. Technol. Innov. 38, 104193 (2025).

    Google Scholar 

  51. Mineo, A., Cosenza, A., Ng, H. Y. & Mannina, G. Volatile fatty acids from sewage sludge by anaerobic membrane bioreactors: Lesson learned from two-year experiments with fouling analysis by the resistance in series model. Results Eng. 21, 101839 (2024).

    Google Scholar 

  52. Buakaew, T. & Ratanatamskul, C. Effects of microaeration and sludge recirculation on VFA and nitrogen removal, membrane fouling reduction and microbial community of the anaerobic baffled biofilm-membrane bioreactor in treating building wastewater. Sci. Tot. Environ. 903, 166248 (2023).

    Google Scholar 

  53. Fontanille, P., Kumar, V., Christophe, G., Nouaille, R. & Larroche, C. Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica. Bioresour. Technol. 114, 443–449 (2012).

    Google Scholar 

  54. Fei, Q. et al. The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production. Bioresour. Technol. 102, 2695–2701 (2011).

    Google Scholar 

  55. Christophe, G. et al. Production of oils from acetic acid by the oleaginous yeast Cryptococcus curvatus. Appl. Biochem. Biotechnol. 167, 1270–1279 (2012).

    Google Scholar 

  56. Pais, C. & Rodrigues, G. The influence of acetic and other weak carboxylic acids on growth and cellular death of the yeast Yarrowia lipolytica. Food Technol. Biotechnol. 38, 27–32 (2000).

    Google Scholar 

  57. Morales-Palomo, S., González-Fernández, C. & Tomás-Pejó, E. Prevailing acid determines the efficiency of oleaginous fermentation from volatile fatty acids. J. Environ. Chem. Eng. 10, 107354 (2022).

    Google Scholar 

  58. Kolouchová, I. et al. Biotransformation of volatile fatty acids by oleaginous and non-oleaginous yeast species. FEMS Yeast Res. 15, 76 (2015).

    Google Scholar 

  59. Thangavelu, K., Sundararaju, P., Srinivasan, N., Muniraj, I. & Uthandi, S. Simultaneous lipid production for biodiesel feedstock and decontamination of sago processing wastewater using Candida tropicalis ASY2. Biotechnol. Biofuels 13, 1–14 (2020).

    Google Scholar 

  60. Ma, X., Gao, Z., Gao, M., Wu, C. & Wang, Q. Microbial lipid production from food waste saccharified liquid under two-stage process. Bioresour. Technol. 289, 121626 (2019).

    Google Scholar 

  61. Bettencourt, S. et al. Single cell oil production by oleaginous yeasts grown in synthetic and waste-derived volatile fatty acids. Microorganisms 8, 1809 (2020).

    Google Scholar 

Download references