References
-
Amicarelli, V., Lagioia, G. & Bux, C. Global warming potential of food waste through the life cycle assessment: An analytical review. Environ. Impact Assess. Rev. 91, 106677 (2021).
-
Shurson, G. C., Dierenfeld, E. S. & Dou, Z. Rules are meant to be broken – Rethinking the regulations on the use of food waste as animal feed. Resour. Conserv. Recycl. 199, 107273 (2023).
-
Yang, Y., Chen, D., Hu, S. & Chen, X. Estimation and analysis of municipal food waste and resource utilization potential in China. Environ. Sci. Pollut. Res. 27, 40633–40642 (2020).
-
Gottardo, M. et al. Boosting butyrate and hydrogen production in acidogenic fermentation of food waste and sewage sludge mixture: a pilot scale demonstration. J. Clean. Prod. 404, 136919 (2023).
-
Van Ginkel, S., Sung, S. & Lay, J. J. biohydrogen production as a function of ph and substrate concentration. Environ. Sci. Technol. 35, 4726–4730 (2001).
-
Zhu, Y. & Yang, S. T. Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum. J. Biotechnol. 110, 143–157 (2004).
-
Zagrodnik, R., Duber, A. & Seifert, K. Dark-fermentative hydrogen production from synthetic lignocellulose hydrolysate by a mixed bacterial culture: The relationship between hydraulic retention time and pH conditions. Bioresour. Technol. 358, 127309 (2022).
-
Park, G. W. et al. Improving hydrogen production by pH adjustment in pressurized gas fermentation. Bioresour. Technol. 346, 126605 (2022).
-
Capson-Tojo, G. et al. Accumulation of propionic acid during consecutive batch anaerobic digestion of commercial food waste. Bioresour. Technol. 245, 724–733 (2017).
-
Pervez, M. N. et al. Factors influencing pressure-driven membrane-assisted volatile fatty acids recovery and purification-A review. Sci. Tot. Environ. 817, 152993 (2022).
-
Pervez, M. N. et al. Double-stage membrane-assisted anaerobic digestion process intensification for production and recovery of volatile fatty acids from food waste. Sci. Tot. Environ. 825, 154084 (2022).
-
Barros, K. S. et al. Recovery and fractionation of volatile fatty acids from fermented solutions by electrodialysis: electrochemical characterization of anion-exchange membranes. J. Environ. Chem. Eng. 12, 114457 (2024).
-
Speer, D. et al. Enhanced, continuous, liquid-liquid extraction and in-situ separation of volatile fatty acids from fermentation broth. Sep. Purif. Technol. 327, 124810 (2023).
-
Aydin, S., Yesil, H. & Tugtas, A. E. Recovery of mixed volatile fatty acids from anaerobically fermented organic wastes by vapor permeation membrane contactors. Bioresour. Technol. 250, 548–555 (2018).
-
Parchami, M. et al. Membrane bioreactor assisted volatile fatty acids production from agro-industrial residues for ruminant feed application. Waste Manage. 170, 62–74 (2023).
-
Jomnonkhaow, U. et al. Membrane bioreactor-assisted volatile fatty acids production and in situ recovery from cow manure. Bioresour. Technol. 321, 124456 (2021).
-
Traina, F., Capodici, M., Torregrossa, M., Viviani, G. & Corsino, S. F. PHA and EPS production from industrial wastewater by conventional activated sludge, membrane bioreactor and aerobic granular sludge technologies: A comprehensive comparison. Chemosphere 355, 141768 (2024).
-
Uwineza, C. et al. Cultivation of edible filamentous fungus Aspergillus oryzae on volatile fatty acids derived from anaerobic digestion of food waste and cow manure. Bioresour. Technol. 337, 125410 (2021).
-
Llamas, M., Dourou, M., González-Fernández, C., Aggelis, G. & Tomás-Pejó, E. Screening of oleaginous yeasts for lipid production using volatile fatty acids as substrate. Biomass Bioenergy 138, 105553 (2020).
-
Shin, S., Go, J. H., Moon, M. & Park, G. W. Automatic fed-batch cultivation enhances microbial lipid production from volatile fatty acids. Energies 16, 1996 (2023).
-
Lei, Y. et al. A review of lipid accumulation by oleaginous yeasts: Culture mode. Sci. Tot. Environ. 919, 170385 (2024).
-
Soccol, C. R. et al. Pilot scale biodiesel production from microbial oil of Rhodosporidium toruloides DEBB 5533 using sugarcane juice: Performance in diesel engine and preliminary economic study. Bioresour. Technol. 223, 259–268 (2017).
-
Carrillo-Verástegui, K. A. et al. Biohydrogen potential assessment of Opuntia spp.: Effect of inoculum-to-substrate ratio and residual biomass evaluation. Int. J. Hydrog. Energy 47, 30085–30096 (2022).
-
Trad, Z. et al. Development of a submerged anaerobic membrane bioreactor for concurrent extraction of volatile fatty acids and biohydrogen production. Bioresour. Technol. 196, 290–300 (2015).
-
Wainaina, S., Parchami, M., Mahboubi, A., Horváth, I. S. & Taherzadeh, M. J. Food waste-derived volatile fatty acids platform using an immersed membrane bioreactor. Bioresour. Technol. 274, 329–334 (2019).
-
Li, M., Liu, G. L., Chi, Z. & Chi, Z. M. Single cell oil production from hydrolysate of cassava starch by marine-derived yeast Rhodotorula mucilaginosa TJY15a. Biomass Bioenergy 34, 101–107 (2010).
-
APHA, A. WEF. Standard Methods for the Examination of Water and Wastewater. (Washington, DC American Public Health Association, American Water Works Association, Water Environment Federation, 2012).
-
Nualsri, C., Kongjan, P. & Reungsang, A. Direct integration of CSTR-UASB reactors for two-stage hydrogen and methane production from sugarcane syrup. Int. J. Hydrog. Energy 41, 17884–17895 (2016).
-
Owen, W. F., Stuckey, D. C., Healy, J. B., Young, L. Y. & McCarty, P. L. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res. 13, 485–492 (1979).
-
Sitthikitpanya, S., Reungsang, A. & Prasertsan, P. Two-stage thermophilic bio-hydrogen and methane production from lime-pretreated oil palm trunk by simultaneous saccharification and fermentation. Int. J. Hydrog. Energy 43, 4284–4293 (2018).
-
Byreddy, A. R., Gupta, A., Barrow, C. J. & Puri, M. A quick colorimetric method for total lipid quantification in microalgae. J. Microbiol. Methods 125, 28–32 (2016).
-
Asunis, F. et al. Dark fermentative volatile fatty acids production from food waste: A review of the potential central role in waste biorefineries. Waste Manage. Res. 40, 1571–1593 (2022).
-
Strazzera, G., Battista, F., Tonanzi, B., Rossetti, S. & Bolzonella, D. Optimization of short chain volatile fatty acids production from household food waste for biorefinery applications. Environ. Technol. Innov. 23, 101562 (2021).
-
Feng, K., Li, H. & Zheng, C. Shifting product spectrum by pH adjustment during long-term continuous anaerobic fermentation of food waste. Bioresour. Technol. 270, 180–188 (2018).
-
García-Depraect, O., Rene, E. R., Diaz-Cruces, V. F. & León-Becerril, E. Effect of process parameters on enhanced biohydrogen production from tequila vinasse via the lactate-acetate pathway. Bioresour. Technol. 273, 618–626 (2019).
-
Gonçalves, M. J., González-Fernández, C. & Greses, S. Long hydraulic retention time mediates stable volatile fatty acids production against slight pH oscillations. Waste Manage. 176, 140–148 (2024).
-
Yu, P., Tu, W., Wu, M., Zhang, Z. & Wang, H. Pilot-scale fermentation of urban food waste for volatile fatty acids production: The importance of pH. Bioresour. Technol. 332, 125116 (2021).
-
Asunis, F. et al. Control of fermentation duration and pH to orient biochemicals and biofuels production from cheese whey. Bioresour. Technol. 289, 121722 (2019).
-
Jankowska, E., Duber, A., Chwialkowska, J., Stodolny, M. & Oleskowicz-Popiel, P. Conversion of organic waste into volatile fatty acids – The influence of process operating parameters. Chem. Eng. J. 345, 395–403 (2018).
-
Lu, Y., Zhang, Q., Wang, X., Zhou, X. & Zhu, J. Effect of pH on volatile fatty acid production from anaerobic digestion of potato peel waste. Bioresour. Technol. 316, 123851 (2020).
-
Nathao, C., Sirisukpoka, U. & Pisutpaisal, N. Production of hydrogen and methane by one and two stage fermentation of food waste. Int. J. Hydrog. Energy 38, 15764–15769 (2013).
-
Soomro, A. F., Ni, Z., Ying, L. & Liu, J. The effect of ISR on OFMSW during acidogenic fermentation for the production of AD precursor: kinetics and synergies. RSC Adv. 9, 18147–18156 (2019).
-
Tian, L., Pan, L. & Wang, L. Effect of inoculum pretreatment and substrate/inoculum ratio on acidogenic fermentation of chemically enhanced primary treatment sludge. Sustainability 16, 3347 (2024).
-
Guellout, Z. et al. Dark fermentative biohydrogen production from vinicultural biomass without exogenous inoculum in a semi-batch reactor: A kinetic study. J. Environ. Manage. 305, 114393 (2022).
-
Gazzola, G. et al. Biorefining food waste through the anaerobic conversion of endogenous lactate into caproate: A fragile balance between microbial substrate utilization and product inhibition. Waste Manage. 150, 328–338 (2022).
-
Tayou, L. N. et al. Acidogenic fermentation of food waste and sewage sludge mixture: Effect of operating parameters on process performance and safety aspects. Process Saf. Environ. Prot. 163, 158–166 (2022).
-
Gottardo, M., Adele Tuci, G., Pavan, P., Dosta, J. & Valentino, F. Short and medium chain organic acids production from hydrolyzed food waste: technical–economic evaluation and insight into the product’s quality. Chem. Eng. Sci. 284, 119539 (2024).
-
Xiao, X. et al. Volatile fatty acids production from kitchen waste slurry using anaerobic membrane bioreactor via alkaline fermentation with high salinity: Evaluation on process performance and microbial succession. Bioresour. Technol. 399, 130576 (2024).
-
Wang, Z. et al. Short-chain carboxylate continuous production from food waste with in situ extraction: Novel design to reduce chemical input for pH control and alleviate membrane fouling. J. Environ. Chem. Eng. 12, 112554 (2024).
-
Parchami, M., De Wever, H., Taherzadeh, M. J. & Mahboubi, A. Production of volatile fatty acids from agro-food residues for ruminant feed inclusion using pilot-scale membrane bioreactor. Environ. Technol. Innov. 38, 104193 (2025).
-
Mineo, A., Cosenza, A., Ng, H. Y. & Mannina, G. Volatile fatty acids from sewage sludge by anaerobic membrane bioreactors: Lesson learned from two-year experiments with fouling analysis by the resistance in series model. Results Eng. 21, 101839 (2024).
-
Buakaew, T. & Ratanatamskul, C. Effects of microaeration and sludge recirculation on VFA and nitrogen removal, membrane fouling reduction and microbial community of the anaerobic baffled biofilm-membrane bioreactor in treating building wastewater. Sci. Tot. Environ. 903, 166248 (2023).
-
Fontanille, P., Kumar, V., Christophe, G., Nouaille, R. & Larroche, C. Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica. Bioresour. Technol. 114, 443–449 (2012).
-
Fei, Q. et al. The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production. Bioresour. Technol. 102, 2695–2701 (2011).
-
Christophe, G. et al. Production of oils from acetic acid by the oleaginous yeast Cryptococcus curvatus. Appl. Biochem. Biotechnol. 167, 1270–1279 (2012).
-
Pais, C. & Rodrigues, G. The influence of acetic and other weak carboxylic acids on growth and cellular death of the yeast Yarrowia lipolytica. Food Technol. Biotechnol. 38, 27–32 (2000).
-
Morales-Palomo, S., González-Fernández, C. & Tomás-Pejó, E. Prevailing acid determines the efficiency of oleaginous fermentation from volatile fatty acids. J. Environ. Chem. Eng. 10, 107354 (2022).
-
Kolouchová, I. et al. Biotransformation of volatile fatty acids by oleaginous and non-oleaginous yeast species. FEMS Yeast Res. 15, 76 (2015).
-
Thangavelu, K., Sundararaju, P., Srinivasan, N., Muniraj, I. & Uthandi, S. Simultaneous lipid production for biodiesel feedstock and decontamination of sago processing wastewater using Candida tropicalis ASY2. Biotechnol. Biofuels 13, 1–14 (2020).
-
Ma, X., Gao, Z., Gao, M., Wu, C. & Wang, Q. Microbial lipid production from food waste saccharified liquid under two-stage process. Bioresour. Technol. 289, 121626 (2019).
-
Bettencourt, S. et al. Single cell oil production by oleaginous yeasts grown in synthetic and waste-derived volatile fatty acids. Microorganisms 8, 1809 (2020).
