Integrated morphological, molecular, histological, and antimicrobial analysis of the leather leaf slug Eleutherocaulis alte from Assiut Governorate, Egypt

integrated-morphological,-molecular,-histological,-and-antimicrobial-analysis-of-the-leather-leaf-slug-eleutherocaulis-alte-from-assiut-governorate,-egypt
Integrated morphological, molecular, histological, and antimicrobial analysis of the leather leaf slug Eleutherocaulis alte from Assiut Governorate, Egypt

References

  1. Greistorfer, S. et al. A histochemical and morphological study of the mucus producing pedal gland system in Latia Neritoides (Mollusca; Gastropoda; Hygrophila). Zoology 156, 126067 (2023).

    Google Scholar 

  2. Barker, G. M. Molluscs as Crop Pests (CABI, 2002).

  3. Howlett, S. A. Terrestrial slug problems: classical biological control and beyond. CABI Reviews. 2012, 1–10 (2012).

    Google Scholar 

  4. Ali, R. F. The influence of overcrowding on the biology of veronicellid slug laevicaulis stuhlmanni aegypti Ali & Robinson, a new subspecies record in Egypt under laboratory conditions. Egypt. J. Experimental Biology (Zoology). 13 (2), 187–192 (2017).

    Google Scholar 

  5. Wiktor, A. Deroceras (Deroceras) Panormitanum (Lessona et Pollonera, 1882)-a new introduced slug species in Poland (Gastropoda: pulmonata: Agriolimacidae). Folia Malacologica 9 (3), 155-157, https://doi.org/10.12657/folmal.009.018 (2001).

  6. Obuid-Allah, A., Abdel-Tawab, H., El-Bakary, Z., Abd El-Wakeil, K. & El-Sanabany, A. A survey and population dynamics of terrestrial slugs (Mollusca, Gastropoda) at Assiut Governate, Egypt. Egypt. J. Zool. 51, 585–608 (2008).

    Google Scholar 

  7. Robinson, D. G. & Hollingsworth, R. G. Survey of slug and snail pests on subsistence and garden crops in the islands of the American Pacific: Guam, and the Northern Mariana islands. Part I The leatherleaf slugs (family: Veronicellidae) USDA, Washington, DC, USA (2005).

  8. Gomes, S. R., Robinson, D. G., Zimmerman, F. J., Obregón, O. & Barr, N. B. Morphological and molecular analysis of the Andean slugs colosius confusus, n. sp., a newly recognized pest of cultivated flowers and coffee from Colombia, Ecuador and Peru, and colosius pulcher (Colosi, 1921)(Gastropoda, Veronicellidae). Malacologia 56 (1&2), 1–30 (2013).

    Google Scholar 

  9. Ali, R. F. & Robinson, D. G. Four records of new to Egypt gastropod species including the first reported tropical leatherleaf slug laevicaulis alte (D’a. De Férussac, 1822)(pulmonata: Veronicellidae). Zool. Ecol. 30 (2), 138–156 (2020).

    Google Scholar 

  10. Ali, R. F. & Robinson, D. G. Recording the terrestrial slug species laevicaulis alte (Férussac, 1822)(Pulmonata: Veronicellidae) in ornamental plants nursery in Giza Governorate, Egypt. Univers. J. Agricultural Res. 10 (2), 170–174 (2022).

    Google Scholar 

  11. Liberto, F., Abusneina, A. & Sparacio, I. New data on slugs and semi-slugs from Cyrenaica (north-eastern Libya)(Parmacellidae, Limacidae, Agriolimacidae, Veronicellidae). Biodiversity Journal. 12(2), 325–334, https://doi.org/10.31396/Biodiv.Jour.2021.12.2.325.334 (2021).

  12. Brodie, G. & Barker, G. Laevicaulis alte (Férussac, 1822). Family Veronicellidae USP Introduced Land Snails of the Fiji Islands Fact Sheet Series 3. (2012).

  13. Prakash, S., Verma, A. K. & Mishra, B. Anatomy of digestive tract of the Indian garden slug, laevicaulis alte (Férussac, 1822). Int. J. Fauna Biol. Stud. 2 (6), 38–40 (2015).

    Google Scholar 

  14. Cowie, R. H. Non-indigenous land and freshwater molluscs in the Islands of the pacific: conservation impacts and threats. Invasive Species Pacific: Tech. Rev. Draft Reg. Strategy 143–172. (2000).

  15. Cowie, R. H., Dillon, R. T., Robinson, D. G. & Smith, J. W. Alien non-marine snails and slugs of priority quarantine importance in the united states: A preliminary risk assessment. Am. Malacological Bull. 27 (1/2), 113–132 (2009).

    Google Scholar 

  16. Smith, A. M. The biochemistry and mechanics of gastropod adhesive gels. Biological Adhesives 2016, 177–19, https://doi.org/10.1007/978-3-319-46082-6_8.

  17. Smith, A. M. Gastropod Secretory Glands and Adhesive Gels (Springer, 2010).

  18. South, A. Terrestrial Slugs: biology, Ecology and Control (Springer Science & Business Media, 2012).

  19. Barr, R. A. Some notes on the mucous and skin glands of Arion Ater. J. Cell Sci. 2 (283), 503–525 (1927).

    Google Scholar 

  20. Wondrak, G. Die exoepithelialen Schleimdrüsenzellen von Arion empiricorum (Fer). Z. für Zellforschung Und Mikroskopische Anatomie. 76, 287–294 (1966).

    Google Scholar 

  21. Chétail, M. & Binot, D. Particularites histochimiques de la glande et de la sole pedieuses d’Arion rufus (Arionidae), 1967).

  22. Mair, J. & Port, G. The influence of mucus production by the slug, Deroceras reticulatum, on predation by pterostichus Madidus and Nebria brevicollis (Coleoptera: Carabidae). Biocontrol Sci. Technol. 12 (3), 325–335 (2002).

    Google Scholar 

  23. Pawlicki, J. et al. The effect of molluscan glue proteins on gel mechanics. J. Exp. Biol. 207 (7), 1127–1135 (2004).

    Google Scholar 

  24. Cilia, G. & Fratini, F. Antimicrobial properties of terrestrial snail and slug mucus. J. Complement. Integr. Med. 15 (3), 20170168 (2018).

    Google Scholar 

  25. El-Zawawy, N. A. & Mona, M. M. Antimicrobial efficacy of Egyptian Eremina desertorum and helix aspersa snail mucus with a novel approach to their anti-inflammatory and wound healing potencies. Sci. Rep. 11 (1), 24317 (2021).

    Google Scholar 

  26. McDermott, M. et al. Advancing discovery of snail mucins function and application. Front. Bioeng. Biotechnol. 9, 734023 (2021).

    Google Scholar 

  27. Phrompanya, P. et al. Biological properties of mucus from land snails (Lissachatina fulica) and freshwater snails (Pomacea canaliculata) and histochemical study of mucous cells in their foot. PeerJ 11, e15827 (2023).

    Google Scholar 

  28. Rashad, M., Sampò, S., Cataldi, A. & Zara, S. Biological activities of gastropods secretions: snail and slug slime. Nat. Prod. Bioprospecting. 13 (1), 42 (2023).

    Google Scholar 

  29. Awad, A. Ultrastructural and morphological discrimination of adult, pupal and larval stages of Spodoptera exigua (Huebner), Lepidoptera: Noctuidae. Ph. D. thesis in entomology, Faculty of Science, Assiut University, Assiut &#8230.

  30. Ali, R. F., Robinson, D. G. & Liberto, F. Morphological description of Laevicaulisstuhlmanni (simroth, 1895)(pulmonata, veronicellidae) from Egypt. Biodivers. Data J. 10, e85495 (2022).

    Google Scholar 

  31. Bishop, M. TERRESTRIAL MOLLUSCA OF QUEENSLAND. THE FAMILY VERONICELLIDAE. (1977).

  32. Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3 (5), 294–299 (1994).

    Google Scholar 

  33. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30 (4), 772–780 (2013).

    Google Scholar 

  34. Criscuolo, A. & Gribaldo, S. BMGE (Block mapping and gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 1–21 (2010).

    Google Scholar 

  35. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35 (6), 1547–1549 (2018).

    Google Scholar 

  36. FelsensteinJ Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39 (4), 783–791 (1985).

    Google Scholar 

  37. Posada, D. & Crandall, K. A. MODELTEST: testing the model of DNA substitution. Bioinf. (Oxford England). 14 (9), 817–818 (1998).

    Google Scholar 

  38. Al-Bedak, O. & Moubasher, A. Aspergillus gaarensis, a new addition to section circumdati from soil of lake El-Gaar in Wadi-El-Natron, Egypt. Stud. Fungi. 5 (1), 59–65 (2020).

    Google Scholar 

  39. Carleton, H. M., Drury, R. A. B. & Wallington, E. A. Carleton’s histological technique (Oxford University Press, 1967).

  40. Greistorfer, S. et al. Characterization of the Arion vulgaris pedal gland system. J. Morphol. 281 (9), 1059–1071 (2020).

    Google Scholar 

  41. Abdel-Malek, A. R., Moustafa, A. Y. & Salem, S. H. Antimicrobial and cytotoxic activities of flavonoid and phenolics extracted from sepia Pharaonis ink (Mollusca: Cephalopoda). BMC Biotechnol. 24 (1), 54 (2024).

    Google Scholar 

  42. CLSI: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. Approved Standard 9th edn (Clinical and Laboratory Standards Institute, 2012). edn. 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA.

  43. Wayne, P. Clinical and Laboratory Standards Institute: Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard. CLSI document M27-A3 and Supplement S 3:6–12. (2008).

  44. Standards, N. C. C. L. & Barry, A. L. Methods for Determining Bactericidal Activity of Antimicrobial Agents: Approved Guideline Vol. 19 (National Committee for Clinical Laboratory Standards Wayne, PA, 1999).

  45. Arikan, S. Current status of antifungal susceptibility testing methods. Med. Mycol. 45 (7), 569–587 (2007).

    Google Scholar 

  46. EH E: Survey and distribution of terrestrial snails in fruit orchards and ornamental plants at Alexandria and El-Beheira Governorates, Egypt. Alexandria Sci. Exch. Journal 34(April-June):242–248. (2013).

  47. Mohammed, G. R. Incidence of land snails inhabiting different vegetation at some governorates in North-East of delta Egypt. J. Plant. Prot. Pathol. 6 (6), 899–907 (2015).

    Google Scholar 

  48. Desoky, A., Sallam, A. & Abd El-Rahman, T. First record of two species from land snails, Monacha obstracta and eobania vermiculata in Sohag Governorate, Egypt. Direct Res. J. Agric. Food Sci. 3 (11), 206–210 (2015).

    Google Scholar 

  49. Desoky, A. Identification of terrestrial gastropods species in Sohag Governorate. Egypt. Archive J. Agric. Environ. Sci. 3, 4548 (2018).

    Google Scholar 

  50. Ali, R. F. & Ramdane, R. Taxonomic key as a simple tool for identifying and determining the abundant terrestrial snails in Egyptian fields (Gastropoda, pulmonata: Succineidae, Geomitridae, Helicidae, Hygromiidae). Egypt. Acad. J. Biol. Sci. B Zool. 12 (2), 173–203 (2020).

    Google Scholar 

  51. BakerHB Veronicellidae from British Guiana. Proc. Acad. Nat. Sci. Phila. 78, 29–34 (1926).

    Google Scholar 

  52. Aguayo, C. G. Sobre el status de Veronicella portoricensis (Pulmonata). Caribbean Journal of Science. 5(1-2), 25-28 (1965).

  53. Naranjo-García, E., Thomé, J. W. & Castillejo, J. A review of the Veronicellidae from Mexico (Gastropoda: Soleolifera). Revista Mexicana De Biodiversidad. 78 (1), 41–50 (2007).

    Google Scholar 

  54. Robinson, D., Hovestadt, A., Fields, A. & Breure, A. The land mollusca of Dominica (Lesser Antilles), with notes on some enigmatic or rare species. Zoologische Mededelingen. 83 (13), 615–650 (2009).

    Google Scholar 

  55. Gude, G. The Fauna of British India, including Ceylon and Burma. (1921).

  56. Runham, N. & Hunter, P. Terrestrial Slugs (Hutchinson Univ. Library, 1970).

  57. Barker, G. M. The Biology of Terrestrial Molluscs (CABI publishing, 2001).

  58. Herbert, D., Kilburn, D. & Kilburn, R. Field Guide To the Land Snails and Slugs of Eastern South Africa (Natal Museum, 2004).

  59. Sajan, S., Tripathy, B. & Cowie, R. H. Laevicaulis Simroth, 1913 (Mollusca, Gastropoda, Systellommatophora, Veronicellidae) is the valid name for a widespread genus of slugs, including the highly invasive laevicaulis alte (Férussac, 1822). Bull. Zoological Nomenclature. 78 (2), 160–164 (2021).

    Google Scholar 

  60. SimrothH Uber die von Herrn Dr. Stuhlmann Im innern von Ostafrika gesammelten Nacktschnecken. Sitzungsberichte Der Naturforschenden Gesellschaft Zu Leipzig. 19 (21), 51–77 (1895).

    Google Scholar 

  61. Colosi, G. Nota Sopra Alcuni vaginulidi. Bollettino Della Società Dei Nat. Di Napoli. 39, 271–279 (1927).

    Google Scholar 

  62. Forcart, L. The Veronicellidae of Africa (Mollusca, Pulmonata (Musée royal du Congo belge, 1953).

  63. Yamaguchi, K., Seo, N. & Furuta, E. Histochemical and ultrastructural analyses of the epithelial cells of the body surface skin from the terrestrial slug, incilaria fruhstorferi. Zoolog. Sci. 17 (8), 1137–1146 (2000).

    Google Scholar 

  64. Cook, A. & Shirbhate, R. The mucus producing glands and the distribution of the cilia of the pulmonate slug Limax pseudoflavus. J. Zool. 201 (1), 97–116 (1983).

    Google Scholar 

  65. Martin, A. & Deyrup-Olsen, I. Function of the epithelial channel cells of the body wall of a terrestrial slug, ariolimax Columbianus. J. Exp. Biol. 121 (1), 301–314 (1986).

    Google Scholar 

  66. COOK, A. Functional aspects of the mucus-producing glands of the systellommatophoran slug, veronicella Floridana. J. Zool. 211 (2), 291–305 (1987).

    Google Scholar 

  67. Wondrak, G. Monotypic gland-cell regions on the body surface of two species of arion: ultrastructure and lectin-binding properties. J. Molluscan Stud. 78 (4), 364–376 (2012).

    Google Scholar 

  68. Dolashka-Angelova, P. et al. Immunological potential of helix vulgaris and Rapana venosa hemocyanins. Immunol. Investig. 37 (8), 822–840 (2008).

    Google Scholar 

  69. Beveridge, T. J. Structures of gram-negative cell walls and their derived membrane vesicles. J. Bacteriol. 181 (16), 4725–4733 (1999).

    Google Scholar 

  70. Greistorfer, S. et al. Snail mucus – glandular origin and composition in helix pomatia. Zoology 122, 126–138 (2017).

    Google Scholar 

  71. Newar, J. & Ghatak, A. Studies on the adhesive property of snail adhesive mucus. Langmuir 31 (44), 12155–12160 (2015).

    Google Scholar 

  72. Zhong Jian, Z. J., Wang WenHong, W. W., Yang XiaoMei, Y. X. & Yan XiuWen, Y. X. Liu Rui LR: A novel cysteine-rich antimicrobial peptide from the mucus of the snail of achatina fulica. Peptides. 39,1-5 (2013).

  73. Iguchi, S. M., Aikawa, T. & Matsumoto, J. J. Antibacterial activity of snail mucus mucin. Comp. Biochem. Physiol. Part. A: Physiol. 72 (3), 571–574 (1982).

    Google Scholar 

  74. Mukherjee, S., Barman, S., Mandal, N. C. & Bhattacharya, S. Anti-bacterial activity of achatina CRP and its mechanism of action. Indian J. Exp. Biol. 52 (7), 692–704 (2014).

    Google Scholar 

  75. Ulagesan, S. & Kim, H. J. Antibacterial and antifungal activities of proteins extracted from seven different snails. Appl. Sci. 8 (8), 1362 (2018).

    Google Scholar 

  76. Ito, S. et al. High molecular weight lectin isolated from the mucus of the giant African snail achatina fulica. Biosci. Biotechnol. Biochem. 75 (1), 20–25 (2011).

    Google Scholar 

  77. Trapella, C. et al. HelixComplex snail mucus exhibits pro-survival, proliferative and pro-migration effects on mammalian fibroblasts. Sci. Rep. 8 (1), 17665 (2018).

    Google Scholar 

Download references