References
-
Volikov, A. B. et al. Directed synthesis of humic and fulvic derivatives with enhanced antioxidant properties. Agronomy 11(10), 1–16 (2021).
-
Kinali, B. et al. Effect of humic acid on oxidative stress and neuroprotection in traumatic spinal cord injury: an experimental study. Turk. J. Med. Sci. 54 (1), 52–58 (2024).
-
Alkan Ozdemir, S. et al. Effect of humic acid on oxidative stress and neuroprotection in hypoxic-ischemic brain injury: part 1. J. Matern Fetal Neonatal Med. 35 (23), 4580–4589 (2022).
-
Winkler, J. & Ghosh, S. Therapeutic potential of fulvic acid in chronic inflammatory diseases and diabetes. J. Diabetes Res. 2018, 5391014 (2018).
-
Trofimova, E. S. et al. Immunomodulating properties of humic acids extracted from oligotrophic sphagnum Magellanicum peat. Bull. Exp. Biol. Med. 170 (4), 461–465 (2021).
-
Vetvicka, V. et al. The relative abundance of oxygen alkyl-related groups in aliphatic domains is involved in the main pharmacological-pleiotropic effects of humic acids. J. Med. Food. 16 (7), 625–632 (2013).
-
Aslantürk, Ö. S., Aşkın Çelik, T. & Sönmez, Y. M. Investigation of antioxidant and in vitro wound healing activity of fulvic acid. J. Inst. Sci. Technol. 9 (3), 1316–1326 (2019).
-
Gheibi, N., Samiee-Rad, F., Sofiabadi, M., Mosayebi, E. & Shalbaf, Z. The effect of combining humic and fulvic acids poultice on wound healing in male rats. J. Cutan. Aesthet. Surg. 17 (2), 105–111 (2024).
-
Zolghadr, L., Behbehani, G. R., Pakbin, B., Hosseini, S. A. & Gheibi, N. A new insight into the anti proliferative and apoptotic effects of fulvic and humic acids as bio product of humus on breast cancer cells, optimized by response surface methodology. Waste Biomass Valorization. 14 (3), 859–872 (2023).
-
van Rensburg, C. E., van Straten, A. & Dekker, J. An in vitro investigation of the antimicrobial activity of oxifulvic acid. J. Antimicrob. Chemother. 46, 853 (2000).
-
Kishor, M. et al. Humic acid as foliar and soil application improve the growth, yield and quality of coffee (cv. C × R) in Western Ghats of India. J. Sci. Food Agric. 101 (6), 2273–2283 (2021).
-
Ampong, K., Thilakaranthna, M. S. & Gorim, L. Y. Understanding the role of humic acids on crop performance and soil health. Front. Agron. 4, 1–14 (2022).
-
Man-Hong, Y., Lei, Z., Sheng-Tao, X., McLaughlin, N. B. & Jing-Hui, L. Effect of water soluble humic acid applied to potato foliage on plant growth, photosynthesis characteristics and fresh tuber yield under different water deficits. Sci. Rep. 10 (1), 7854 (2020).
-
Cusack, P. M. V. Effects of a dietary complex of humic and fulvic acids (FeedMAX 15) on the health and production of feedlot cattle destined for the Australian domestic market. Aust. Vet. J. 86 (1–2), 46–49 (2008).
-
Feng, P. et al. Effects of fulvic acid on growth performance, serum index, gut microbiota, and metabolites of Xianju yellow chicken. Front. Nutr. 9, 963271 (2022).
-
Ji, F., McGlone, J. J. & Kim, S. W. Effects of dietary humic substances on pig growth performance, carcass characteristics, and ammonia emission. J. Anim. Sci. 84 (9), 2482–2490 (2006).
-
Terry, S. A. et al. Humic substances alter ammonia production and the microbial populations within a RUSITEC fed a mixed hay—concentrate diet. Front. Microbiol. 9, 1410 (2018).
-
Trckova, M., Lorencova, A., Babak, V., Neca, J. & Ciganek, M. The effect of leonardite and lignite on the health of weaned piglets. Res. Vet. Sci. 119, 134–142 (2018).
-
Liu, L. et al. Effects of fulvic acid on broiler performance, blood biochemistry, and intestinal microflora. Poult. Sci. 103 (2), 103273 (2024).
-
Swat, M., Rybicka, I. & Gliszczyńska-Świgło, A. Characterization of fulvic acid beverages by mineral profile and antioxidant capacity. Foods 8(12), 1–22 (2019).
-
Aeschbacher, M., Graf, C., Schwarzenbach, R. P. & Sander, M. Antioxidant properties of humic substances. Environ. Sci. Technol. 46 (9), 4916–4925 (2012).
-
Wu, C., Lyu, A. & Shan, S. Fulvic acid attenuates atopic dermatitis by downregulating CCL17/22. Molecules 28(8), 1–12 (2023).
-
Schepetkin, I., Khlebnikov, A. & Kwon, B. S. Medical drugs from humus matter: focus on mumie. Drug Dev. Res. 57 (3), 140–159 (2002).
-
Vašková, J., Stupák, M., Vidová Ugurbaş, M., Žatko, D. & Vaško, L. Therapeutic efficiency of humic acids in intoxications. Life (Basel) 13(4), 1–23 (2023).
-
Zhang, W. et al. Glucose-responsive, antioxidative HA-PBA-FA/EN106 hydrogel enhanced diabetic wound healing through modulation of FEM1b-FNIP1 axis and promoting angiogenesis. Bioact Mater. 30, 29–45 (2023).
-
Samiee-Rad, F., Hosseini Sedighi, S. F., Taherkhani, A. & Gheibi, N. Evaluation of healing effects of poultice containing 0.5% fulvic acid on male White-Male rats with skin ulcer. J. Cutan. Aesthet. Surg. 15 (1), 40–47 (2022).
-
de Melo, B. A. G., Motta, F. L. & Santana, M. H. A. Humic acids: structural properties and multiple functionalities for novel technological developments. Mater. Sci. Eng. C Mater. Biol. Appl. 62, 967–974 (2016).
-
Bjørklund, G. et al. Natural compounds and products from an anti-aging perspective. Molecules 27(20), 1–29 (2022).
-
Murbach, T. S. et al. A toxicological evaluation of a fulvic and humic acids preparation. Toxicol. Rep. 7, 1242–1254 (2020).
-
Chien, S. J., Chen, T. C., Kuo, H. C., Chen, C. N. & Chang, S. F. Fulvic acid attenuates homocysteine-induced cyclooxygenase-2 expression in human monocytes. BMC Complement. Altern. Med. 15, 61 (2015).
-
Junek, R. et al. Bimodal effect of humic acids on the LPS-induced TNF-alpha release from differentiated U937 cells. Phytomedicine 16 (5), 470–476 (2009).
-
Aydin, S. K., Dalgic, S., Karaman, M., Kirlangic, O. F. & Yildirim, H. Effects of fulvic acid on different cancer cell lines. Proc. West. Mark. Ed. Assoc. Conf. 1(10), 1031 (2017).
-
Liang, C. C., Park, A. Y. & Guan, J. L. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2 (2), 329–333 (2007).
-
Yarrow, J. C., Perlman, Z. E., Westwood, N. J. & Mitchison, T. J. A high-throughput cell migration assay using scratch wound healing, a comparison of image-based readout methods. BMC Biotechnol. 4, 1–9 (2004).
-
Giridharan, S. & Srinivasan, M. Mechanisms of NF-κB p65 and strategies for therapeutic manipulation. J. Inflamm. Res. 11, 407–419 (2018).
-
de Assis, S. I. S. et al. DR, et al. The prolonged activation of the p65 subunit of the NF-Kappa-B nuclear factor sustains the persistent effect of advanced glycation end products on inflammatory sensitization in macrophages. Int. J. Mol. Sci. 25(5), 1–16 (2024).
-
Aggarwal, B. B. Nuclear factor-kappaB: the enemy within. Cancer Cell. 6 (3), 203–208 (2004).
-
Couper, K. N., Blount, D. G. & Riley, E. M. IL-10: the master regulator of immunity to infection. J. Immunol. 180 (9), 5771–5777 (2008).
-
Song, B. et al. Association of the gut Microbiome with fecal short-chain fatty acids, lipopolysaccharides, and obesity in young Chinese college students. Front. Nutr. 10, 1-11 (2023).
-
Van Saene, J. J. M., Stoutenbeek, C. P. & Van Saene, H. K. F. Faecal endotoxin in human volunteers: normal values. Microb. Ecol. Health Dis. 5 (4), 179–184 (1992).
-
Tang, C. et al. Effects of fulvic acids on gut barrier, microbial composition, fecal ammonia emission, and growth performance in broiler chickens. J. Appl. Poult. Res. 32 (1), 100322 (2023).
-
Zhao, X., Zhu, D., Tan, J., Wang, R. & Qi, G. Cooperative action of fulvic acid and Bacillus paralicheniformis ferment in regulating soil microbiota and improving soil fertility and plant resistance to bacterial wilt disease. Microbiol. Spectr. 11 (2), e0407922 (2023).
-
El-Telbany, M. et al. Combination of meropenem and zinc oxide nanoparticles; antimicrobial synergism, exaggerated antibiofilm activity, and efficient therapeutic strategy against bacterial keratitis. Antibiotics 11(10), 1–15 (2022).
-
Mohamed, A. A. et al. A combined therapy of meropenem-ZnO nanoparticles efficiently eliminates carbapenem-resistant Klebsiella pneumoniae biofilms, with reduced nephrotoxicity (in vitro). Lett. Appl. Microbiol. 77(12), 1–15 (2024).
-
Dong, T. S. et al. Obesity is associated with a distinct brain-gut microbiome signature that connects prevotella and bacteroides to the brain’s reward center. Gut Microbes. 14 (1), 2051999 (2022).
-
Christensen, L. et al. Prevotella abundance predicts weight loss success in healthy, overweight adults consuming a whole-grain diet ad libitum: a post hoc analysis of a 6-Wk randomized controlled trial. J. Nutr. 149 (12), 2174–2181 (2019).
-
Sebastià, C. et al. Interrelation between gut microbiota, SCFA, and fatty acid composition in pigs. mSystems 9(1), 1–19 (2024).
-
Mohamed, A. A., Seyam, E. A., Hussein, S. A. & Abdel-Haleem, M. Quercetin-mediated repression of AdrA gene expression in Escherichia coli: dual roles in antibiofilm activity and oxidative stress regulation. Biol. (Bratisl) 80 (11), 3191–3201 (2025).
