References
-
Hynynen, K. Ultrasound for drug and gene delivery to the brain. Adv. Drug Deliv Rev. 60, 1209–1217 (2008).
-
Yao, H. et al. Enhanced blood-brain barrier penetration and glioma therapy mediated by a new peptide modified gene delivery system. Biomaterials 37, 345–352 (2015).
-
McMahon, D., Poon, C. & Hynynen, K. Evaluating the safety profile of focused ultrasound and microbubble-mediated treatments to increase blood-brain barrier permeability. Expert Opin. Drug Deliv. 16, 129–142 (2019).
-
Meng, Y. et al. MR-guided focused ultrasound enhances delivery of trastuzumab to Her2-positive brain metastases. Sci. Transl Med. 13, eabj4011 (2021).
-
Baseri, B. et al. Activation of signaling pathways following localized delivery of systemically administered neurotrophic factors across the blood-brain barrier using focused ultrasound and microbubbles. Phys. Med. Biol. 57, N65–81 (2012).
-
Aly, A. E. et al. Focused ultrasound enhances transgene expression of intranasal hGDNF DNA nanoparticles in the sonicated brain regions. J. Control Release. 358, 498–509 (2023).
-
Li, H. R. et al. Engineering viral vectors for acoustically targeted gene delivery. Nat. Commun. 15, 4924 (2024).
-
Ogawa, K. et al. Focused ultrasound/microbubbles-assisted BBB opening enhances LNP-mediated mRNA delivery to brain. J. Control Release. 348, 34–41 (2022).
-
Kalia, L. V. & Lang, A. E. Parkinson’s disease. Lancet 386, 896–912 (2015).
-
Sardi, S. P., Cedarbaum, J. M. & Brundin, P. Targeted therapies for parkinson’s disease: from genetics to the clinic. Mov. Disord. 33, 684–696 (2018).
-
Meng, Y. et al. Putaminal Recombinant glucocerebrosidase delivery with magnetic Resonance-Guided focused ultrasound in parkinson’s disease: A phase I study. Mov. Disord. 37, 2134–2139 (2022).
-
Crystal, R. G. Adenovirus: the first effective in vivo gene delivery vector. Hum. Gene Ther. 25, 3–11 (2014).
-
Tyler, J. L. et al. Pharmacokinetics of superselective intra-arterial and intravenous [11 C]BCNU evaluated by PET. J. Nucl. Med. 27, 775–780 (1986).
-
Wang, M., Etu, J. & Joshi, S. Enhanced disruption of the blood brain barrier by intracarotid mannitol injection during transient cerebral hypoperfusion in rabbits. J. Neurosurg. Anesthesiol. 19, 249–256 (2007).
-
Arai, Y., Kido, C. & Ariyoshi, Y. [Pharmacokinetics in arterial infusion chemotherapy]. Gan Kagaku Ryoho. 20, 1755–1761 (1993).
-
Huang, R., Boltze, J. & Li, S. Strategies for improved Intra-arterial treatments targeting brain tumors: a systematic review. Front. Oncol. 10, 1443 (2020).
-
Charnsangavej, C. et al. Supraclinoid intracarotid chemotherapy using a flow-directed soft-tipped catheter. Radiology 155, 655–657 (1985).
-
Dedrick, R. L. Arterial drug infusion: Pharmacokinetic problems and pitfalls. J. Natl. Cancer Inst. 80, 84–89 (1988).
-
Chopra, R., Vykhodtseva, N. & Hynynen, K. Influence of exposure time and pressure amplitude on blood-brain-barrier opening using transcranial ultrasound exposures. ACS Chem. Neurosci. 1, 391–398 (2010).
-
Wu, S. K. et al. Characterization of different microbubbles in assisting focused Ultrasound-Induced Blood-Brain barrier opening. Sci. Rep. 7, 46689 (2017).
-
Nesbit, M., Mamo, J. C., Majimbi, M., Lam, V. & Takechi, R. Automated quantitative analysis of ex vivo Blood-Brain barrier permeability using Intellesis Machine-Learning. Front. Neurosci. 15, 617221 (2021).
-
Villaseñor, R. et al. Trafficking of endogenous Immunoglobulins by endothelial cells at the Blood-Brain barrier. Sci. Rep. 6, 25658 (2016).
-
Jönsson, A. et al. Quantification of burn induced extravasation of Evans blue albumin based on digital image analysis. Comput. Biol. Med. 28, 153–167 (1998).
-
von Drygalski, A. et al. Infrared fluorescence for vascular barrier breach in vivo–a novel method for quantitation of albumin efflux. Thromb. Haemost. 108, 981–991 (2012).
-
Weihe, E., Depboylu, C., Schütz, B., Schäfer, M. K. & Eiden, L. E. Three types of tyrosine hydroxylase-positive CNS neurons distinguished by Dopa decarboxylase and VMAT2 co-expression. Cell. Mol. Neurobiol. 26, 659–678 (2006).
-
Wang, J. et al. Ultrasound-mediated blood-brain barrier opening: an effective drug delivery system for theranostics of brain diseases. Adv. Drug Deliv Rev. 190, 114539 (2022).
-
Yang, F. Y. et al. Quantitative evaluation of focused ultrasound with a contrast agent on blood-brain barrier disruption. Ultrasound Med. Biol. 33, 1421–1427 (2007).
-
Le Péchoux, C. et al. Clinical neurological outcome and quality of life among patients with limited small-cell cancer treated with two different doses of prophylactic cranial irradiation in the intergroup phase III trial (PCI99-01, EORTC 22003 – 08004, RTOG 0212 and IFCT 99 – 01). Ann. Oncol. 22, 1154–1163 (2011).
-
Li, H. et al. Acoustic characterization and enhanced ultrasound imaging of Long-Circulating Lipid-Coated microbubbles. J. Ultrasound Med. 37, 1243–1256 (2018).
-
Schneider, M. Characteristics of sonovuetrade mark. Echocardiography 16, 743–746. https://doi.org/10.1111/j.1540-8175.1999.tb00144.x (1999).
-
Hsu, Y. H. et al. Influence of acoustic parameters and sonication schemes on transcranial blood-brain barrier disruption induced by pulsed weakly focused ultrasound. Pharmaceutics. 14, 1207 (2022).
-
Shin, J. et al. Focused ultrasound-mediated noninvasive blood-brain barrier modulation: preclinical examination of efficacy and safety in various sonication parameters. NeuroSurg. Focus. 44, E15 (2018).
-
O’Reilly, M. A. et al. Investigation of the safety of focused ultrasound-induced Blood-Brain barrier opening in a natural canine model of aging. Theranostics 7, 3573–3584 (2017).
-
Safiul Islam, M. M. S., Ahmed, M. A., Islam, N. & Hossain Mohammad Asaduzzaman Chowdhury, advances in nanoparticles in targeted drug delivery–A review. Res. Surf. Interfaces. 19, 100529 (2025).
-
Bouakaz, A. & Michel Escoffre, J. From concept to early clinical trials: 30 years of microbubble-based ultrasound-mediated drug delivery research. Adv. Drug Deliv Rev. 206, 115199 (2024).
-
Norat, P. et al. Intraarterial transplantation of mitochondria after ischemic stroke reduces cerebral infarction. Stroke Vasc Interv Neurol 3 (2023).
-
McCully, J. D., Cowan, D. B., Emani, S. M. & Del Nido, P. J. Mitochondrial transplantation: from animal models to clinical use in humans. Mitochondrion 34, 127–134 (2017).
-
Zhao, M. et al. Mitochondrion-based organellar therapies for central nervous system diseases. Cell. Commun. Signal. 22, 487 (2024).
-
Andersen, S. B. et al. Super-resolution ultrasound imaging can quantify alterations in microbubble velocities in the renal vasculature of rats. Diagnostics (Basel) 12 (2022).
-
Yan, F. et al. Paclitaxel-liposome-microbubble complexes as ultrasound-triggered therapeutic drug delivery carriers. J. Control Release. 166, 246–255 (2013).
-
Rechberger, J. S., Thiele, F. & Daniels, D. J. Status quo and trends of Intra-Arterial therapy for brain tumors: A bibliometric and clinical trials analysis. Pharmaceutics 13, 1885 (2021).
-
Sheikov, N., McDannold, N., Sharma, S. & Hynynen, K. Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium. Ultrasound Med. Biol. 34, 1093–1104 (2008).
-
Boockvar, J. A. et al. Safety and maximum tolerated dose of superselective intraarterial cerebral infusion of bevacizumab after osmotic blood-brain barrier disruption for recurrent malignant glioma. Clin. Article J Neurosurg. 114, 624–632 (2011).
-
Chakraborty, S. et al. Superselective intraarterial cerebral infusion of cetuximab after osmotic blood/brain barrier disruption for recurrent malignant glioma: phase I study. J. Neurooncol. 128, 405–415 (2016).
-
Lochhead, J. J., Ronaldson, P. T. & Davis, T. P. Hypoxic stress and inflammatory pain disrupt Blood-Brain barrier tight junctions: implications for drug delivery to the central nervous system. AAPS J. 19, 910–920 (2017).
-
Ji, R. et al. Cavitation-modulated inflammatory response following focused ultrasound blood-brain barrier opening. J. Control Release. 337, 458–471 (2021).
-
Kopf, M. et al. Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature 362, 245–248 (1993).
-
Purkerson, J. M. & Isakson, P. C. Interleukin 5 (IL-5) provides a signal that is required in addition to IL-4 for isotype switching to Immunoglobulin (Ig) G1 and IgE. J. Exp. Med. 175, 973–982. https://doi.org/10.1084/jem.175.4.973 (1992).
