Intraarterial microbubble delivery enhances focused ultrasound induced blood brain barrier opening in the murine substantia nigra

intraarterial-microbubble-delivery-enhances-focused-ultrasound-induced-blood-brain-barrier-opening-in-the-murine-substantia-nigra
Intraarterial microbubble delivery enhances focused ultrasound induced blood brain barrier opening in the murine substantia nigra

References

  1. Hynynen, K. Ultrasound for drug and gene delivery to the brain. Adv. Drug Deliv Rev. 60, 1209–1217 (2008).

    Google Scholar 

  2. Yao, H. et al. Enhanced blood-brain barrier penetration and glioma therapy mediated by a new peptide modified gene delivery system. Biomaterials 37, 345–352 (2015).

    Google Scholar 

  3. McMahon, D., Poon, C. & Hynynen, K. Evaluating the safety profile of focused ultrasound and microbubble-mediated treatments to increase blood-brain barrier permeability. Expert Opin. Drug Deliv. 16, 129–142 (2019).

    Google Scholar 

  4. Meng, Y. et al. MR-guided focused ultrasound enhances delivery of trastuzumab to Her2-positive brain metastases. Sci. Transl Med. 13, eabj4011 (2021).

    Google Scholar 

  5. Baseri, B. et al. Activation of signaling pathways following localized delivery of systemically administered neurotrophic factors across the blood-brain barrier using focused ultrasound and microbubbles. Phys. Med. Biol. 57, N65–81 (2012).

    Google Scholar 

  6. Aly, A. E. et al. Focused ultrasound enhances transgene expression of intranasal hGDNF DNA nanoparticles in the sonicated brain regions. J. Control Release. 358, 498–509 (2023).

    Google Scholar 

  7. Li, H. R. et al. Engineering viral vectors for acoustically targeted gene delivery. Nat. Commun. 15, 4924 (2024).

    Google Scholar 

  8. Ogawa, K. et al. Focused ultrasound/microbubbles-assisted BBB opening enhances LNP-mediated mRNA delivery to brain. J. Control Release. 348, 34–41 (2022).

    Google Scholar 

  9. Kalia, L. V. & Lang, A. E. Parkinson’s disease. Lancet 386, 896–912 (2015).

    Google Scholar 

  10. Sardi, S. P., Cedarbaum, J. M. & Brundin, P. Targeted therapies for parkinson’s disease: from genetics to the clinic. Mov. Disord. 33, 684–696 (2018).

    Google Scholar 

  11. Meng, Y. et al. Putaminal Recombinant glucocerebrosidase delivery with magnetic Resonance-Guided focused ultrasound in parkinson’s disease: A phase I study. Mov. Disord. 37, 2134–2139 (2022).

    Google Scholar 

  12. Crystal, R. G. Adenovirus: the first effective in vivo gene delivery vector. Hum. Gene Ther. 25, 3–11 (2014).

    Google Scholar 

  13. Tyler, J. L. et al. Pharmacokinetics of superselective intra-arterial and intravenous [11 C]BCNU evaluated by PET. J. Nucl. Med. 27, 775–780 (1986).

    Google Scholar 

  14. Wang, M., Etu, J. & Joshi, S. Enhanced disruption of the blood brain barrier by intracarotid mannitol injection during transient cerebral hypoperfusion in rabbits. J. Neurosurg. Anesthesiol. 19, 249–256 (2007).

    Google Scholar 

  15. Arai, Y., Kido, C. & Ariyoshi, Y. [Pharmacokinetics in arterial infusion chemotherapy]. Gan Kagaku Ryoho. 20, 1755–1761 (1993).

    Google Scholar 

  16. Huang, R., Boltze, J. & Li, S. Strategies for improved Intra-arterial treatments targeting brain tumors: a systematic review. Front. Oncol. 10, 1443 (2020).

    Google Scholar 

  17. Charnsangavej, C. et al. Supraclinoid intracarotid chemotherapy using a flow-directed soft-tipped catheter. Radiology 155, 655–657 (1985).

    Google Scholar 

  18. Dedrick, R. L. Arterial drug infusion: Pharmacokinetic problems and pitfalls. J. Natl. Cancer Inst. 80, 84–89 (1988).

    Google Scholar 

  19. Chopra, R., Vykhodtseva, N. & Hynynen, K. Influence of exposure time and pressure amplitude on blood-brain-barrier opening using transcranial ultrasound exposures. ACS Chem. Neurosci. 1, 391–398 (2010).

    Google Scholar 

  20. Wu, S. K. et al. Characterization of different microbubbles in assisting focused Ultrasound-Induced Blood-Brain barrier opening. Sci. Rep. 7, 46689 (2017).

    Google Scholar 

  21. Nesbit, M., Mamo, J. C., Majimbi, M., Lam, V. & Takechi, R. Automated quantitative analysis of ex vivo Blood-Brain barrier permeability using Intellesis Machine-Learning. Front. Neurosci. 15, 617221 (2021).

    Google Scholar 

  22. Villaseñor, R. et al. Trafficking of endogenous Immunoglobulins by endothelial cells at the Blood-Brain barrier. Sci. Rep. 6, 25658 (2016).

    Google Scholar 

  23. Jönsson, A. et al. Quantification of burn induced extravasation of Evans blue albumin based on digital image analysis. Comput. Biol. Med. 28, 153–167 (1998).

    Google Scholar 

  24. von Drygalski, A. et al. Infrared fluorescence for vascular barrier breach in vivo–a novel method for quantitation of albumin efflux. Thromb. Haemost. 108, 981–991 (2012).

    Google Scholar 

  25. Weihe, E., Depboylu, C., Schütz, B., Schäfer, M. K. & Eiden, L. E. Three types of tyrosine hydroxylase-positive CNS neurons distinguished by Dopa decarboxylase and VMAT2 co-expression. Cell. Mol. Neurobiol. 26, 659–678 (2006).

    Google Scholar 

  26. Wang, J. et al. Ultrasound-mediated blood-brain barrier opening: an effective drug delivery system for theranostics of brain diseases. Adv. Drug Deliv Rev. 190, 114539 (2022).

    Google Scholar 

  27. Yang, F. Y. et al. Quantitative evaluation of focused ultrasound with a contrast agent on blood-brain barrier disruption. Ultrasound Med. Biol. 33, 1421–1427 (2007).

    Google Scholar 

  28. Le Péchoux, C. et al. Clinical neurological outcome and quality of life among patients with limited small-cell cancer treated with two different doses of prophylactic cranial irradiation in the intergroup phase III trial (PCI99-01, EORTC 22003 – 08004, RTOG 0212 and IFCT 99 – 01). Ann. Oncol. 22, 1154–1163 (2011).

    Google Scholar 

  29. Li, H. et al. Acoustic characterization and enhanced ultrasound imaging of Long-Circulating Lipid-Coated microbubbles. J. Ultrasound Med. 37, 1243–1256 (2018).

    Google Scholar 

  30. Schneider, M. Characteristics of sonovuetrade mark. Echocardiography 16, 743–746. https://doi.org/10.1111/j.1540-8175.1999.tb00144.x (1999).

    Google Scholar 

  31. Hsu, Y. H. et al. Influence of acoustic parameters and sonication schemes on transcranial blood-brain barrier disruption induced by pulsed weakly focused ultrasound. Pharmaceutics. 14, 1207 (2022).

  32. Shin, J. et al. Focused ultrasound-mediated noninvasive blood-brain barrier modulation: preclinical examination of efficacy and safety in various sonication parameters. NeuroSurg. Focus. 44, E15 (2018).

    Google Scholar 

  33. O’Reilly, M. A. et al. Investigation of the safety of focused ultrasound-induced Blood-Brain barrier opening in a natural canine model of aging. Theranostics 7, 3573–3584 (2017).

    Google Scholar 

  34. Safiul Islam, M. M. S., Ahmed, M. A., Islam, N. & Hossain Mohammad Asaduzzaman Chowdhury, advances in nanoparticles in targeted drug delivery–A review. Res. Surf. Interfaces. 19, 100529 (2025).

    Google Scholar 

  35. Bouakaz, A. & Michel Escoffre, J. From concept to early clinical trials: 30 years of microbubble-based ultrasound-mediated drug delivery research. Adv. Drug Deliv Rev. 206, 115199 (2024).

    Google Scholar 

  36. Norat, P. et al. Intraarterial transplantation of mitochondria after ischemic stroke reduces cerebral infarction. Stroke Vasc Interv Neurol 3 (2023).

  37. McCully, J. D., Cowan, D. B., Emani, S. M. & Del Nido, P. J. Mitochondrial transplantation: from animal models to clinical use in humans. Mitochondrion 34, 127–134 (2017).

    Google Scholar 

  38. Zhao, M. et al. Mitochondrion-based organellar therapies for central nervous system diseases. Cell. Commun. Signal. 22, 487 (2024).

    Google Scholar 

  39. Andersen, S. B. et al. Super-resolution ultrasound imaging can quantify alterations in microbubble velocities in the renal vasculature of rats. Diagnostics (Basel) 12 (2022).

  40. Yan, F. et al. Paclitaxel-liposome-microbubble complexes as ultrasound-triggered therapeutic drug delivery carriers. J. Control Release. 166, 246–255 (2013).

    Google Scholar 

  41. Rechberger, J. S., Thiele, F. & Daniels, D. J. Status quo and trends of Intra-Arterial therapy for brain tumors: A bibliometric and clinical trials analysis. Pharmaceutics 13, 1885 (2021).

    Google Scholar 

  42. Sheikov, N., McDannold, N., Sharma, S. & Hynynen, K. Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium. Ultrasound Med. Biol. 34, 1093–1104 (2008).

    Google Scholar 

  43. Boockvar, J. A. et al. Safety and maximum tolerated dose of superselective intraarterial cerebral infusion of bevacizumab after osmotic blood-brain barrier disruption for recurrent malignant glioma. Clin. Article J Neurosurg. 114, 624–632 (2011).

    Google Scholar 

  44. Chakraborty, S. et al. Superselective intraarterial cerebral infusion of cetuximab after osmotic blood/brain barrier disruption for recurrent malignant glioma: phase I study. J. Neurooncol. 128, 405–415 (2016).

    Google Scholar 

  45. Lochhead, J. J., Ronaldson, P. T. & Davis, T. P. Hypoxic stress and inflammatory pain disrupt Blood-Brain barrier tight junctions: implications for drug delivery to the central nervous system. AAPS J. 19, 910–920 (2017).

    Google Scholar 

  46. Ji, R. et al. Cavitation-modulated inflammatory response following focused ultrasound blood-brain barrier opening. J. Control Release. 337, 458–471 (2021).

    Google Scholar 

  47. Kopf, M. et al. Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature 362, 245–248 (1993).

    Google Scholar 

  48. Purkerson, J. M. & Isakson, P. C. Interleukin 5 (IL-5) provides a signal that is required in addition to IL-4 for isotype switching to Immunoglobulin (Ig) G1 and IgE. J. Exp. Med. 175, 973–982. https://doi.org/10.1084/jem.175.4.973 (1992).

    Google Scholar 

Download references