Intraperitoneal programming of tailored CAR macrophages via mRNA lipid nanoparticle to boost cancer immunotherapy

intraperitoneal-programming-of-tailored-car-macrophages-via-mrna-lipid-nanoparticle-to-boost-cancer-immunotherapy
Intraperitoneal programming of tailored CAR macrophages via mRNA lipid nanoparticle to boost cancer immunotherapy

Data availability

Source data are provided with this paper. The main data supporting the results in this study are available within the paper and its Supplementary Information. The single-cell RNA sequencing data can be accessed from the Genome Sequence Archive (GSA) under the accession number CRA023627 (https://ngdc.cncb.ac.cn/gsub/submit/gsa/subCRA038363/finishedOverview), and the bulk RNA sequencing data under accession number CRA023617 (https://ngdc.cncb.ac.cn/gsub/submit/gsa/subCRA038350/finishedOverview). Additional raw dataset, mRNA template, and cell lines described in this study are available upon request from the corresponding author (Prof. Sitao Xie, xiesitao@him.cas.cn) and subject to an executed Materials Transfer Agreement with Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences. Source data are provided with this paper.

References

  1. Kepenekian, V. et al. Advances in the management of peritoneal malignancies. Nat. Rev. Clin. Oncol. 19, 698–718 (2022).

    Google Scholar 

  2. Cortes-Guiral, D. et al. Primary and metastatic peritoneal surface malignancies. Nat. Rev. Dis. Prim. 7, 91 (2021).

    Google Scholar 

  3. Coccolini, F. et al. Peritoneal carcinomatosis. World J. Gastroenterol. 19, 6979–6994 (2013).

    Google Scholar 

  4. Cao, C. et al. A systematic review and meta-analysis of cytoreductive surgery with perioperative intraperitoneal chemotherapy for peritoneal carcinomatosis of colorectal origin. Ann. Surg. Oncol. 16, 2152–2165 (2009).

    Google Scholar 

  5. Morano, W. F. et al. Intraperitoneal immunotherapy: historical perspectives and modern therapy. Cancer Gene Ther. 23, 373–381 (2016).

    Google Scholar 

  6. Yao, X. et al. Molecular biology and immunology of gastric cancer peritoneal metastasis. Transl. Gastroenterol. Hepatol. 5, 57 (2020).

    Google Scholar 

  7. Ornella, M. S. C. et al. Immunotherapy for peritoneal carcinomatosis: challenges and prospective outcomes. Cancers (Basel) 15, 2383 (2023).

    Google Scholar 

  8. Kubicka, U. et al. Normal human immune peritoneal cells: subpopulations and functional characteristics. Scand. J. Immunol. 44, 157–163 (1996).

    Google Scholar 

  9. Duan, Z. et al. Targeting macrophages in cancer immunotherapy. Signal Transduct. Target Ther. 6, 127 (2021).

    Google Scholar 

  10. Biswas, S. K. et al. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11, 889–896 (2010).

    Google Scholar 

  11. Pittet, M. J. et al. Clinical relevance of tumour-associated macrophages. Nat. Rev. Clin. Oncol. 19, 402–421 (2022).

    Google Scholar 

  12. Zhang, H. et al. Roles of tumor-associated macrophages in anti-PD-1/PD-L1 immunotherapy for solid cancers. Mol. Cancer 22, 58 (2023).

    Google Scholar 

  13. Hao, Y. et al. The CD47-SIRPalpha axis is a promising target for cancer immunotherapies. Int. Immunopharmacol. 120, 110255 (2023).

    Google Scholar 

  14. Anderson, N. R. et al. Macrophage-based approaches for cancer immunotherapy. Cancer Res. 81, 1201–1208 (2021).

    Google Scholar 

  15. Barkal, A. A. et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 572, 392–396 (2019).

    Google Scholar 

  16. Majeti, R. et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138, 286–299 (2009).

    Google Scholar 

  17. Feng, Y. et al. A toll-like receptor agonist mimicking microbial signal to generate tumor-suppressive macrophages. Nat. Commun. 10, 2272 (2019).

    Google Scholar 

  18. Zhang, F. et al. Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nat. Commun. 10, 3974 (2019).

    Google Scholar 

  19. Jalil, A. R. et al. Macrophage checkpoint blockade: results from initial clinical trials, binding analyses, and CD47-SIRPalpha structure-function. Antib. Ther. 3, 80–94 (2020).

    Google Scholar 

  20. Joshi, S. et al. Tim4 enables large peritoneal macrophages to cross-present tumor antigens at early stages of tumorigenesis. Cell Rep. 43, 114096 (2024).

    Google Scholar 

  21. Klichinsky, M. et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat. Biotechnol. 38, 947–953 (2020).

    Google Scholar 

  22. Kang, M. et al. Nanocomplex-mediated in vivo programming to chimeric antigen receptor-M1 macrophages for cancer therapy. Adv. Mater. 33, e2103258 (2021).

    Google Scholar 

  23. Gao, L. et al. Convection-enhanced delivery of nanoencapsulated gene locoregionally yielding ErbB2/Her2-specific CAR-macrophages for brainstem glioma immunotherapy. J. Nanobiotechnol. 21, 56 (2023).

    Google Scholar 

  24. Chen, C. et al. Intracavity generation of glioma stem cell-specific CAR macrophages primes locoregional immunity for postoperative glioblastoma therapy. Sci. Transl. Med 14, eabn1128 (2022).

    Google Scholar 

  25. Lei, A. et al. A second-generation M1-polarized CAR macrophage with antitumor efficacy. Nat. Immunol. 25, 102–116 (2024).

  26. Shen, J. et al. Activating innate immune responses repolarizes hPSC-derived CAR macrophages to improve anti-tumor activity. Cell Stem Cell 31, 1003–1019.e1009 (2024).

    Google Scholar 

  27. Li, N. et al. A new era of cancer immunotherapy: combining revolutionary technologies for enhanced CAR-M therapy. Mol. Cancer 23, 117 (2024).

    Google Scholar 

  28. Blache, U. et al. Potential solutions for manufacture of CAR T cells in cancer immunotherapy. Nat. Commun. 13, 5225 (2022).

    Google Scholar 

  29. Spanjaart, A. M. et al. Confused about confusion. N. Engl. J. Med. 386, 80–87 (2022).

    Google Scholar 

  30. Lareau, C. A. et al. Latent human herpesvirus 6 is reactivated in CAR T cells. Nature 623, 608–615 (2023).

    Google Scholar 

  31. Yang, Z. et al. Dual mRNA co-delivery for in situ generation of phagocytosis-enhanced CAR macrophages augments hepatocellular carcinoma immunotherapy. J. Control Release 360, 718–733 (2023).

    Google Scholar 

  32. Poon, W. et al. A framework for designing delivery systems. Nat. Nanotechnol. 15, 819–829 (2020).

    Google Scholar 

  33. Sindhwani, S. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 19, 566–575 (2020).

    Google Scholar 

  34. Taylor, P. R. et al. Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat. Immunol. 8, 31–38 (2007).

    Google Scholar 

  35. Theobald, H. et al. Apolipoprotein E controls dectin-1-dependent development of monocyte-derived alveolar macrophages upon pulmonary beta-glucan-induced inflammatory adaptation. Nat. Immunol. 25, 994–1006 (2024).

  36. Vonderheide, R. H. CD40 agonist antibodies in cancer immunotherapy. Annu. Rev. Med. 71, 47–58 (2020).

    Google Scholar 

  37. Liu, P. S. et al. CD40 signal rewires fatty acid and glutamine metabolism for stimulating macrophage anti-tumorigenic functions. Nat. Immunol. 24, 452–462 (2023).

    Google Scholar 

  38. Kagan, J. C. et al. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat. Immunol. 9, 361–368 (2008).

    Google Scholar 

  39. Luozhong, S. et al. Phosphatidylserine lipid nanoparticles promote systemic RNA delivery to secondary lymphoid organs. Nano Lett. 22, 8304–8311 (2022).

    Google Scholar 

  40. Patel, S. et al. Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA. Nat. Commun. 11, 983 (2020).

    Google Scholar 

  41. Li, W. et al. Chimeric antigen receptor designed to prevent ubiquitination and downregulation showed durable antitumor efficacy. Immunity 53, 456–470.e456 (2020).

    Google Scholar 

  42. Candas-Green, D. et al. Dual blockade of CD47 and HER2 eliminates radioresistant breast cancer cells. Nat. Commun. 11, 4591 (2020).

    Google Scholar 

  43. Upton, R. et al. Combining CD47 blockade with trastuzumab eliminates HER2-positive breast cancer cells and overcomes trastuzumab tolerance. Proc. Natl. Acad. Sci. USA 118, e202684911 (2021).

    Google Scholar 

  44. Weiskopf, K. et al. Engineered SIRPalpha variants as immunotherapeutic adjuvants to anticancer antibodies. Science 341, 88–91 (2013).

    Google Scholar 

  45. Hoch, T. et al. Multiplexed imaging mass cytometry of the chemokine milieus in melanoma characterizes features of the response to immunotherapy. Sci. Immunol. 7, eabk1692 (2022).

    Google Scholar 

  46. Reschke, R. et al. CXCL9 and CXCL10 bring the heat to tumors. Sci. Immunol. 7, eabq6509 (2022).

    Google Scholar 

  47. Chow, M. T. et al. Intratumoral activity of the CXCR3 chemokine system is required for the efficacy of Anti-PD-1 therapy. Immunity 50, 1498–1512.e1495 (2019).

    Google Scholar 

  48. Oh, S. A. et al. PD-L1 expression by dendritic cells is a key regulator of T-cell immunity in cancer. Nat. Cancer 1, 681–691 (2020).

    Google Scholar 

  49. Peng, Q. et al. PD-L1 on dendritic cells attenuates T cell activation and regulates response to immune checkpoint blockade. Nat. Commun. 11, 4835 (2020).

    Google Scholar 

  50. Gu, S. S. et al. Therapeutically increasing MHC-I expression potentiates immune checkpoint blockade. Cancer Discov. 11, 1524–1541 (2021).

    Google Scholar 

  51. Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).

    Google Scholar 

  52. Tsui, C. et al. MYB orchestrates T cell exhaustion and response to checkpoint inhibition. Nature 609, 354–360 (2022).

    Google Scholar 

  53. Siddiqui, I. et al. Intratumoral Tcf1(+)PD-1(+)CD8(+) T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211.e110 (2019).

    Google Scholar 

  54. Guerriero, J. L. Macrophages: their untold story in T cell activation and function. Int. Rev. Cell Mol. Biol. 342, 73–93 (2019).

    Google Scholar 

  55. Pierini, S. et al. Chimeric antigen receptor macrophages (CAR-M) sensitize HER2+ solid tumors to PD1 blockade in pre-clinical models. Nat. Commun. 16, 706 (2025).

    Google Scholar 

  56. Qu, T. et al. Ligufalimab, a novel anti-CD47 antibody with no hemagglutination demonstrates both monotherapy and combo antitumor activity. J. Immunother. Cancer 10, e005517 (2022).

    Google Scholar 

  57. Yu, J. et al. SIRPalpha-Fc fusion protein IMM01 exhibits dual anti-tumor activities by targeting CD47/SIRPalpha signal pathway via blocking the “don’t eat me” signal and activating the “eat me” signal. J. Hematol. Oncol. 15, 167 (2022).

    Google Scholar 

  58. Trouplin, V. et al. Bone marrow-derived macrophage production. J. Vis. Exp. 81, e50966 (2013).

  59. Andries, O. et al. N(1)-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J. Control Release 217, 337–344 (2015).

    Google Scholar 

  60. Miao, L. et al. Synergistic lipid compositions for albumin receptor mediated delivery of mRNA to the liver. Nat. Commun. 11, 2424 (2020).

    Google Scholar 

  61. Paradis, E. et al. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    Google Scholar 

Download references

Acknowledgements

Authors acknowledge support from the Shared Instrumentation Core Facility, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences. National Key Research and Development Program of China 2022YFC3401402 (S.X.). National Key Research and Development Program of China 2023YFC3405100 (X.L.). National Natural Science Foundation of China T2188102 (W.T.). National Natural Science Foundation of China 22104133 (S.X.). National Natural Science Foundation of China 32201143 (X.L.). Hangzhou Institute of Medicine Chinese Academy of Sciences 2024ZZBS02 (S.X.). Zhejiang Provincial Natural Science Foundation of China LDQ23B050001 (S.X.). Zhejiang Provincial Natural Science Foundation of China LDQ24B020002 (X.L.). Zhejiang Provincial Natural Science Foundation of China LQ22B020007 (C.Z.).

Author information

Authors and Affiliations

  1. Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China

    Kedan Gu, Ting Liang, Luting Hu, Yifan Zhao, Weiyang Ying, Mengke Zhang, Yashuang Chen, Hongyu Wu, Meng Wang, Yuping Zhu, Wenxi Wang, Yu Zhang, Chao Zuo, Zhen Du, Penghui Zhang, Liwen Li, Xiangsheng Liu, Sitao Xie & Weihong Tan

  2. School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China

    Kedan Gu, Wenxi Wang, Yu Zhang, Chao Zuo, Zhen Du, Penghui Zhang, Xiangsheng Liu, Sitao Xie & Weihong Tan

  3. Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China

    Benmeng Liang, Xinrui Lin, Yanqi Zhang & Jia Song

  4. Zhejiang Key Lab of Vaccine, Infectious Disease Prevention and Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China

    Yu Zhang, Chao Zuo & Sitao Xie

  5. Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China

    Sitao Xie

Authors

  1. Kedan Gu
  2. Ting Liang
  3. Luting Hu
  4. Yifan Zhao
  5. Weiyang Ying
  6. Mengke Zhang
  7. Yashuang Chen
  8. Benmeng Liang
  9. Xinrui Lin
  10. Yanqi Zhang
  11. Hongyu Wu
  12. Meng Wang
  13. Yuping Zhu
  14. Wenxi Wang
  15. Yu Zhang
  16. Chao Zuo
  17. Zhen Du
  18. Penghui Zhang
  19. Jia Song
  20. Liwen Li
  21. Xiangsheng Liu
  22. Sitao Xie
  23. Weihong Tan

Contributions

Conceptualization: K.G., X.L., S.X. and W.T. Methodology: T.L., L.H., Y.Z., W.Y., M.Z., Y.C., H.W., M.W., Y.Z., C.Z., W.W., Z.D., L.L. and P.Z. Data analysis: B.L., S.L., Y.Z., and J.S. Funding acquisition and Supervision: X.L., S.X. and W.T. Writing–original draft & review & editing: K.G., X.L., S.X. and W.T.

Corresponding authors

Correspondence to Xiangsheng Liu, Sitao Xie or Weihong Tan.

Ethics declarations

Competing interests

The authors have filed a patent application (CN202410159815.8; Title: Methods for generating multifunctional CAR-Ms in situ and their application in immunotherapy; W.T., S.X., K.G., X.L., P.Z. and C.Z. are co-inventors) for some aspects of this work. The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Marie Duhamel, Enzo Medico, Alice Dandrea and the other anonymous reviewer(s) for their contribution to the peer review of this work. [A peer review file is available].

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, K., Liang, T., Hu, L. et al. Intraperitoneal programming of tailored CAR macrophages via mRNA lipid nanoparticle to boost cancer immunotherapy. Nat Commun (2025). https://doi.org/10.1038/s41467-025-67674-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41467-025-67674-9