References
-
Blattman, J. N. & Greenberg, P. D. Cancer immunotherapy: A treatment for the masses. Science 305(5681), 200–205 (2004).
-
Sharma, P. & Allison, J. P. Immune checkpoint targeting in cancer therapy: Toward combination strategies with curative potential. Cell 161(2), 205–214 (2015).
-
Shiravand, Y. et al. Immune checkpoint inhibitors in cancer therapy. Curr. Oncol. 29(5), 3044–3060 (2022).
-
Pauken, K. E. & Wherry, E. J. Overcoming T cell exhaustion in infection and cancer. Trends Immunol. 36(4), 265–276 (2015).
-
Wei, S. C., Duffy, C. R. & Allison, J. P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 8(9), 1069–1086 (2018).
-
Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363(8), 711–723 (2010).
-
Robert, C. et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 364(26), 2517–2526 (2011).
-
Topalian, S. L. et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N. Engl. J. Med. 366(26), 2443–2454 (2012).
-
Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373(1), 23–34 (2015).
-
Rittmeyer, A. et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet 389(10066), 255–265 (2017).
-
Mathieu, L. et al. FDA approval summary: Atezolizumab and durvalumab in combination with platinum-based chemotherapy in extensive stage small cell lung cancer. Oncologist 26(5), 433–438 (2021).
-
Marin-Acevedo, J. A., Kimbrough, E. O. & Lou, Y. Next generation of immune checkpoint inhibitors and beyond. J. Hematol. Oncol. 14(1), 1–29 (2021).
-
Su, J. et al. Relatlimab: A novel drug targeting immune checkpoint LAG-3 in melanoma therapy. Front. Pharmacol. https://doi.org/10.3389/fphar.2023.1349081 (2024).
-
Ortega, M. A. et al. PD-1/PD-L1 axis: Implications in immune regulation, cancer progression, and translational applications. J. Mol. Med. 102(8), 987–1000 (2024).
-
Parvez, A. et al. PD-1 and PD-L1: Architects of immune symphony and immunotherapy breakthroughs in cancer treatment. Front. Immunol. https://doi.org/10.3389/fimmu.2023.1296341 (2023).
-
Reck, M. et al. Updated analysis of KEYNOTE-024: Pembrolizumab versus platinum-based chemotherapy for advanced non–small-cell lung cancer with PD-L1 tumor proportion score of 50% or greater. J. Clin. Oncol. 37(7), 537–546 (2019).
-
André, T. et al. Pembrolizumab in microsatellite-instability—High advanced colorectal cancer. N. Engl. J. Med. 383(23), 2207–2218 (2020).
-
Das, S. & Johnson, D. B. Immune-related adverse events and anti-tumor efficacy of immune checkpoint inhibitors. J. Immunother. Cancer. 7(1), 1–11 (2019).
-
Bagchi, S., Yuan, R. & Engleman, E. G. Immune checkpoint inhibitors for the treatment of cancer: Clinical impact and mechanisms of response and resistance. Annu. Rev. Pathol. 16(1), 223–249 (2021).
-
Chen, D. S. & Mellman, I. Oncology meets immunology: The cancer-immunity cycle. Immunity 39(1), 1–10 (2013).
-
Liu, Y.-T. & Sun, Z.-J. Turning cold tumors into hot tumors by improving T-cell infiltration. Theranostics 11(11), 5365–5386 (2021).
-
Bonaventura, P. et al. Cold tumors: A therapeutic challenge for immunotherapy. Front. Immunol. https://doi.org/10.3389/fimmu.2019.00168 (2019).
-
El-Murr, N. et al. MiRNA genes constitute new targets for microsatellite instability in colorectal cancer. PLoS ONE https://doi.org/10.1371/journal.pone.0031862 (2012).
-
Cohen, R. et al. Immune checkpoint inhibition in colorectal cancer: Microsatellite instability and beyond. Target Oncol. 15, 11–24 (2020).
-
Janjigian, Y. Y. et al. First-line nivolumab plus chemotherapy for advanced gastric, gastroesophageal junction, and esophageal adenocarcinoma: 3-year follow-up of the phase III CheckMate 649 trial. J. Clin. Oncol. 42(17), 2012–2020 (2024).
-
Weng, C.-Y., Kao, C.-X., Chang, T.-S. & Huang, Y.-H. Immuno-metabolism: The role of cancer niche in immune checkpoint inhibitor resistance. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22031258 (2021).
-
Jiang, Z., Hsu, J. L., Li, Y., Hortobagyi, G. N. & Hung, M.-C. Cancer cell metabolism bolsters immunotherapy resistance by promoting an immunosuppressive tumor microenvironment. Front. Oncol. https://doi.org/10.3389/fonc.2020.01197 (2020).
-
Li, F. et al. The association between CD8+ tumor-infiltrating lymphocytes and the clinical outcome of cancer immunotherapy: A systematic review and meta-analysis. EClinicalMedicine https://doi.org/10.1016/j.eclinm.2021.101134 (2021).
-
Hiam-Galvez, K. J., Allen, B. M. & Spitzer, M. H. Systemic immunity in cancer. Nat. Rev. Cancer 21(6), 345–359 (2021).
-
Lim, S. M., Hong, M. H. & Kim, H. R. Immunotherapy for non-small cell lung cancer: Current landscape and future perspectives. Immune Netw. https://doi.org/10.4110/in.2020.20.e10 (2020).
-
Li, Y. et al. Multimodal immune phenotyping reveals microbial-T cell interactions that shape pancreatic cancer. Cell. Rep. Med. 5(2), 101397. https://doi.org/10.1016/j.xcrm.2024.101397 (2024).
-
Ni, J. J., Zhang, Z. Z., Ge, M. J., Chen, J. Y. & Zhuo, W. Immune-based combination therapy to convert immunologically cold tumors into hot tumors: An update and new insights. Acta Pharmacol. Sin. 44(2), 288–307 (2023).
-
Vafaei, S. et al. Combination therapy with immune checkpoint inhibitors (ICIs); A new frontier. Cancer Cell. Int. 22, 1–27 (2022).
-
Carbone, C. et al. Intratumoral injection of TLR9 agonist promotes an immunopermissive microenvironment transition and causes cooperative antitumor activity in combination with anti-PD1 in pancreatic cancer. J. Immunother. Cancer 9(9), 1–14 (2021).
-
Rwandamuriye, F. X. et al. Local therapy with combination TLR agonists stimulates systemic anti-tumor immunity and sensitizes tumors to immune checkpoint blockade. Oncoimmunology https://doi.org/10.1080/2162402X.2024.2395067 (2024).
-
Fernandez-Rodriguez, L. et al. Dual TLR9 and PD-L1 targeting unleashes dendritic cells to induce durable antitumor immunity. J. Immunother. Cancer https://doi.org/10.1136/jitc-2023-006714 (2023).
-
Kapp, K. et al. EnanDIM-a novel family of L-nucleotide-protected TLR9 agonists for cancer immunotherapy. J. Immunother. Cancer 7, 1–15 (2019).
-
Schleimann, M. H. et al. TLR9 agonist MGN1703 enhances B cell differentiation and function in lymph nodes. EBioMedicine 45, 328–340 (2019).
-
Weihrauch, M. R. et al. Phase I clinical study of the toll-like receptor 9 agonist MGN1703 in patients with metastatic solid tumours. Eur. J Cancer. 51(2), 146–156 (2015).
-
Diab, A., et al. Positive phase 1 data for intratumoral IMO-2125 in combination with ipilimumab demonstrating an overall response rate (ORR) of 44% in melanoma patients refractory to anti-PD1 therapy. European society for medical oncology congress 2017 (2017).
-
Babiker, H. M., et al., editors. Activation of innate and adaptive immunity using intratumoral tilsotolimod (IMO-2125) as monotherapy in patients with refractory solid tumors: a phase Ib study (ILLUMINATE-101). American Association for Cancer Research (AACR) Conference, Atlanta, GA (2019).
-
Karapetyan, L., Luke, J. J. & Davar, D. Toll-like receptor 9 agonists in cancer. Onco Targets Ther. 13, 10039–10060 (2020).
-
Wang, D., Jiang, W., Zhu, F., Mao, X. & Agrawal, S. Modulation of the tumor microenvironment by intratumoral administration of IMO-2125, a novel TLR9 agonist, for cancer immunotherapy. Int. J. Oncol. 53(3), 1193–1203 (2018).
-
Starr, P. TLR9 Agonist plus immunotherapy may overcome resistance to PD-1 inhibition. JHOP Online Web Exclusives [Internet]. Available from: https://www.jhoponline.com/web-exclusives/tlr9-agonist-plus-immunotherapy-may-overcome-resistance-to-pd-1-inhibition
-
Milhem, M. M, et al. AST-008: A novel approach to TLR9 agonism with PD-1 blockade for anti-PD-1 refractory Merkel cell carcinoma (MCC) and cutaneous squamous cell carcinoma (CSCC). American Society of Clinical Oncology (2020).
-
Carbone, C. et al. Intratumoral injection of TLR9 agonist promotes an immunopermissive microenvironment transition and causes cooperative antitumor activity in combination with anti-PD1 in pancreatic cancer. J. Immunother. Cancer https://doi.org/10.1136/jitc-2021-002876 (2021).
-
Dongye, Z., Li, J. & Wu, Y. Toll-like receptor 9 agonists and combination therapies: Strategies to modulate the tumour immune microenvironment for systemic anti-tumour immunity. Br. J. Cancer 127(9), 1584–1594 (2022).
-
Rolfo, C., Giovannetti, E., Martinez, P., McCue, S. & Naing, A. Applications and clinical trial landscape using Toll-like receptor agonists to reduce the toll of cancer. NPJ Precis. Oncol. 7(1), 26. https://doi.org/10.1038/s41698-023-00364-1 (2023).
-
Spitzer, M. H. et al. Systemic immunity is required for effective cancer immunotherapy. Cell 168(3), 487–502 (2017).
-
Drozdov, A. S., Nikitin, P. I. & Rozenberg, J. M. Systematic review of cancer targeting by nanoparticles revealed a global association between accumulation in tumors and spleen. Int. J. Mol. Sci. 22(23), 13011. https://doi.org/10.3390/ijms222313011 (2021).
-
Wu, M. et al. Spleen-targeted neoantigen DNA vaccine for personalized immunotherapy of hepatocellular carcinoma. EMBO Mol. Med. 15(10), e16836. https://doi.org/10.15252/emmm.202216836 (2023).
-
de Jong, S. et al. Liposomal murine CpG DNA induces an anti-tumor immune response in a syngeneic mouse model of colon carcinoma. Cancer Immunol. Immunother. 56(8), 1251–1264 (2007).
-
Chen, P. et al. Maximizing TLR9 activation in cancer immunotherapy with dual-adjuvanted spherical nucleic acids. Nano Lett. 22(10), 4058–4066 (2022).
-
Krieg, A. M. Development of TLR9 agonists for cancer therapy. J. Clin. Investig. 117(5), 1184–1194 (2007).
-
Hirsh, V. M17-04 novel vaccines and immunotherapy, TLR9 agonists. J. Thorac. Oncol. 2(8 Suppl 4), s201 (2007).
-
Chuang, Y.-C. et al. Adjuvant effect of toll-like receptor 9 activation on cancer immunotherapy using checkpoint blockade. Front. Immunol. 11, 1075. https://doi.org/10.3389/fimmu.2020.01075 (2020).
-
Miles, M. A. et al. TLR9 monotherapy in immune-competent mice suppresses orthotopic prostate tumor development. Cells https://doi.org/10.3390/cells13010097 (2024).
-
Boven, L., Montagne, L., Nottet, H. & De Groot, C. Macrophage inflammatory protein-1 α (MIP-1 α), MIP-1 β, and RANTES mRNA semiquantification and protein expression in active demyelinating multiple sclerosis (MS) lesions. Clin. Exp. Immunol. 122(2), 257–263 (2000).
-
Krieg, A. M. et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374(6522), 546–549 (1995).
-
Kadowaki, N., Antonenko, S. & Liu, Y. J. Distinct CpG DNA and polyinosinic–polycytidylic acid double-stranded RNA, respectively, stimulate CD11c– type 2 dendritic cell precursors and CD11c+ dendritic cells to produce type I IFN. J. Immunol. 166(4), 2291–2295 (2001).
-
Kazemi, M. H. et al. Tumor-infiltrating lymphocytes for treatment of solid tumors: It takes two to tango?. Front. Immunol. https://doi.org/10.3389/fimmu.2022.1018962 (2022).
-
Zhao, Y. et al. Tumor infiltrating lymphocyte (TIL) therapy for solid tumor treatment: progressions and challenges. Cancers (Basel) https://doi.org/10.3390/cancers14174160 (2022).
-
Wang, Z.-T. et al. Tumor immunity: A brief overview of tumor-infiltrating immune cells and research advances into tumor-infiltrating lymphocytes in gynecological malignancies. Exp. Ther. Med. 27(4), 1–15 (2024).
-
Whiteside, T. L. Tumor-Infiltrating Lymphocytes and Their Role in Solid Tumor Progression 89–106 (Springer, 2022).
-
Bai, Z. et al. Tumor-infiltrating lymphocytes in colorectal cancer: The fundamental indication and application on immunotherapy. Front. Immunol. https://doi.org/10.3389/fimmu.2021.808964 (2022).
-
Kang, S. et al. The significance of microsatellite instability in colorectal cancer after controlling for clinicopathological factors. Medicine https://doi.org/10.1097/MD.0000000000010019 (2018).
-
Heregger, R. et al. Unraveling resistance to immunotherapy in MSI-high colorectal cancer. Cancers (Basel) https://doi.org/10.3390/cancers15205090 (2023).
-
Schoenfeld, A. J. et al. Lifileucel, an autologous tumor-infiltrating lymphocyte monotherapy, in patients with advanced non–small cell lung cancer resistant to immune checkpoint inhibitors. Cancer Discov. 14(8), 1389–1402 (2024).
-
Fridman, W. H., Pagès, F., Sautès-Fridman, C. & Galon, J. The immune contexture in human tumours: Impact on clinical outcome. Nat. Rev. Cancer. 12(4), 298–306 (2012).
-
Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515(7528), 568–571 (2014).
-
Jeon, S. Y., Shin, H. S., Lee, H., Lee, J. O. & Kim, Y. S. The anti-tumor effect of the IFNγ/Fas chimera expressed on CT26 tumor cells. Anim. Cells Syst. (Seoul) 29(1), 46–56 (2025).
-
Domankevich, V. et al. Combining alpha radiation based brachytherapy with immunomodulators promotes complete tumor regression in mice via tumor specific long term immune response. Cancer Immunol. Immunother. 68(12), 1949–1958 (2019).
-
Sparwasser, T. et al. Immunostimulatory CpG-oligodeoxynucleotides cause extramedullary murine hemopoiesis. J. Immunol. 162, 2368 (1999).
