Intravenous administration of CpG7909 lipoplex enhances anti-PD1 immunotherapy by modulating the tumor microenvironment and inducing durable tumor regression

intravenous-administration-of-cpg7909-lipoplex-enhances-anti-pd1-immunotherapy-by-modulating-the-tumor-microenvironment-and-inducing-durable-tumor-regression
Intravenous administration of CpG7909 lipoplex enhances anti-PD1 immunotherapy by modulating the tumor microenvironment and inducing durable tumor regression

References

  1. Blattman, J. N. & Greenberg, P. D. Cancer immunotherapy: A treatment for the masses. Science 305(5681), 200–205 (2004).

    Google Scholar 

  2. Sharma, P. & Allison, J. P. Immune checkpoint targeting in cancer therapy: Toward combination strategies with curative potential. Cell 161(2), 205–214 (2015).

    Google Scholar 

  3. Shiravand, Y. et al. Immune checkpoint inhibitors in cancer therapy. Curr. Oncol. 29(5), 3044–3060 (2022).

    Google Scholar 

  4. Pauken, K. E. & Wherry, E. J. Overcoming T cell exhaustion in infection and cancer. Trends Immunol. 36(4), 265–276 (2015).

    Google Scholar 

  5. Wei, S. C., Duffy, C. R. & Allison, J. P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 8(9), 1069–1086 (2018).

    Google Scholar 

  6. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363(8), 711–723 (2010).

    Google Scholar 

  7. Robert, C. et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 364(26), 2517–2526 (2011).

    Google Scholar 

  8. Topalian, S. L. et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N. Engl. J. Med. 366(26), 2443–2454 (2012).

    Google Scholar 

  9. Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373(1), 23–34 (2015).

    Google Scholar 

  10. Rittmeyer, A. et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet 389(10066), 255–265 (2017).

    Google Scholar 

  11. Mathieu, L. et al. FDA approval summary: Atezolizumab and durvalumab in combination with platinum-based chemotherapy in extensive stage small cell lung cancer. Oncologist 26(5), 433–438 (2021).

    Google Scholar 

  12. Marin-Acevedo, J. A., Kimbrough, E. O. & Lou, Y. Next generation of immune checkpoint inhibitors and beyond. J. Hematol. Oncol. 14(1), 1–29 (2021).

    Google Scholar 

  13. Su, J. et al. Relatlimab: A novel drug targeting immune checkpoint LAG-3 in melanoma therapy. Front. Pharmacol. https://doi.org/10.3389/fphar.2023.1349081 (2024).

    Google Scholar 

  14. Ortega, M. A. et al. PD-1/PD-L1 axis: Implications in immune regulation, cancer progression, and translational applications. J. Mol. Med. 102(8), 987–1000 (2024).

    Google Scholar 

  15. Parvez, A. et al. PD-1 and PD-L1: Architects of immune symphony and immunotherapy breakthroughs in cancer treatment. Front. Immunol. https://doi.org/10.3389/fimmu.2023.1296341 (2023).

    Google Scholar 

  16. Reck, M. et al. Updated analysis of KEYNOTE-024: Pembrolizumab versus platinum-based chemotherapy for advanced non–small-cell lung cancer with PD-L1 tumor proportion score of 50% or greater. J. Clin. Oncol. 37(7), 537–546 (2019).

    Google Scholar 

  17. André, T. et al. Pembrolizumab in microsatellite-instability—High advanced colorectal cancer. N. Engl. J. Med. 383(23), 2207–2218 (2020).

    Google Scholar 

  18. Das, S. & Johnson, D. B. Immune-related adverse events and anti-tumor efficacy of immune checkpoint inhibitors. J. Immunother. Cancer. 7(1), 1–11 (2019).

    Google Scholar 

  19. Bagchi, S., Yuan, R. & Engleman, E. G. Immune checkpoint inhibitors for the treatment of cancer: Clinical impact and mechanisms of response and resistance. Annu. Rev. Pathol. 16(1), 223–249 (2021).

    Google Scholar 

  20. Chen, D. S. & Mellman, I. Oncology meets immunology: The cancer-immunity cycle. Immunity 39(1), 1–10 (2013).

    Google Scholar 

  21. Liu, Y.-T. & Sun, Z.-J. Turning cold tumors into hot tumors by improving T-cell infiltration. Theranostics 11(11), 5365–5386 (2021).

    Google Scholar 

  22. Bonaventura, P. et al. Cold tumors: A therapeutic challenge for immunotherapy. Front. Immunol. https://doi.org/10.3389/fimmu.2019.00168 (2019).

    Google Scholar 

  23. El-Murr, N. et al. MiRNA genes constitute new targets for microsatellite instability in colorectal cancer. PLoS ONE https://doi.org/10.1371/journal.pone.0031862 (2012).

    Google Scholar 

  24. Cohen, R. et al. Immune checkpoint inhibition in colorectal cancer: Microsatellite instability and beyond. Target Oncol. 15, 11–24 (2020).

    Google Scholar 

  25. Janjigian, Y. Y. et al. First-line nivolumab plus chemotherapy for advanced gastric, gastroesophageal junction, and esophageal adenocarcinoma: 3-year follow-up of the phase III CheckMate 649 trial. J. Clin. Oncol. 42(17), 2012–2020 (2024).

    Google Scholar 

  26. Weng, C.-Y., Kao, C.-X., Chang, T.-S. & Huang, Y.-H. Immuno-metabolism: The role of cancer niche in immune checkpoint inhibitor resistance. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22031258 (2021).

    Google Scholar 

  27. Jiang, Z., Hsu, J. L., Li, Y., Hortobagyi, G. N. & Hung, M.-C. Cancer cell metabolism bolsters immunotherapy resistance by promoting an immunosuppressive tumor microenvironment. Front. Oncol. https://doi.org/10.3389/fonc.2020.01197 (2020).

    Google Scholar 

  28. Li, F. et al. The association between CD8+ tumor-infiltrating lymphocytes and the clinical outcome of cancer immunotherapy: A systematic review and meta-analysis. EClinicalMedicine https://doi.org/10.1016/j.eclinm.2021.101134 (2021).

    Google Scholar 

  29. Hiam-Galvez, K. J., Allen, B. M. & Spitzer, M. H. Systemic immunity in cancer. Nat. Rev. Cancer 21(6), 345–359 (2021).

    Google Scholar 

  30. Lim, S. M., Hong, M. H. & Kim, H. R. Immunotherapy for non-small cell lung cancer: Current landscape and future perspectives. Immune Netw. https://doi.org/10.4110/in.2020.20.e10 (2020).

    Google Scholar 

  31. Li, Y. et al. Multimodal immune phenotyping reveals microbial-T cell interactions that shape pancreatic cancer. Cell. Rep. Med. 5(2), 101397. https://doi.org/10.1016/j.xcrm.2024.101397 (2024).

    Google Scholar 

  32. Ni, J. J., Zhang, Z. Z., Ge, M. J., Chen, J. Y. & Zhuo, W. Immune-based combination therapy to convert immunologically cold tumors into hot tumors: An update and new insights. Acta Pharmacol. Sin. 44(2), 288–307 (2023).

    Google Scholar 

  33. Vafaei, S. et al. Combination therapy with immune checkpoint inhibitors (ICIs); A new frontier. Cancer Cell. Int. 22, 1–27 (2022).

    Google Scholar 

  34. Carbone, C. et al. Intratumoral injection of TLR9 agonist promotes an immunopermissive microenvironment transition and causes cooperative antitumor activity in combination with anti-PD1 in pancreatic cancer. J. Immunother. Cancer 9(9), 1–14 (2021).

    Google Scholar 

  35. Rwandamuriye, F. X. et al. Local therapy with combination TLR agonists stimulates systemic anti-tumor immunity and sensitizes tumors to immune checkpoint blockade. Oncoimmunology https://doi.org/10.1080/2162402X.2024.2395067 (2024).

    Google Scholar 

  36. Fernandez-Rodriguez, L. et al. Dual TLR9 and PD-L1 targeting unleashes dendritic cells to induce durable antitumor immunity. J. Immunother. Cancer https://doi.org/10.1136/jitc-2023-006714 (2023).

    Google Scholar 

  37. Kapp, K. et al. EnanDIM-a novel family of L-nucleotide-protected TLR9 agonists for cancer immunotherapy. J. Immunother. Cancer 7, 1–15 (2019).

    Google Scholar 

  38. Schleimann, M. H. et al. TLR9 agonist MGN1703 enhances B cell differentiation and function in lymph nodes. EBioMedicine 45, 328–340 (2019).

    Google Scholar 

  39. Weihrauch, M. R. et al. Phase I clinical study of the toll-like receptor 9 agonist MGN1703 in patients with metastatic solid tumours. Eur. J Cancer. 51(2), 146–156 (2015).

    Google Scholar 

  40. Diab, A., et al. Positive phase 1 data for intratumoral IMO-2125 in combination with ipilimumab demonstrating an overall response rate (ORR) of 44% in melanoma patients refractory to anti-PD1 therapy. European society for medical oncology congress 2017 (2017).

  41. Babiker, H. M., et al., editors. Activation of innate and adaptive immunity using intratumoral tilsotolimod (IMO-2125) as monotherapy in patients with refractory solid tumors: a phase Ib study (ILLUMINATE-101). American Association for Cancer Research (AACR) Conference, Atlanta, GA (2019).

  42. Karapetyan, L., Luke, J. J. & Davar, D. Toll-like receptor 9 agonists in cancer. Onco Targets Ther. 13, 10039–10060 (2020).

    Google Scholar 

  43. Wang, D., Jiang, W., Zhu, F., Mao, X. & Agrawal, S. Modulation of the tumor microenvironment by intratumoral administration of IMO-2125, a novel TLR9 agonist, for cancer immunotherapy. Int. J. Oncol. 53(3), 1193–1203 (2018).

    Google Scholar 

  44. Starr, P. TLR9 Agonist plus immunotherapy may overcome resistance to PD-1 inhibition. JHOP Online Web Exclusives [Internet]. Available from: https://www.jhoponline.com/web-exclusives/tlr9-agonist-plus-immunotherapy-may-overcome-resistance-to-pd-1-inhibition

  45. Milhem, M. M, et al. AST-008: A novel approach to TLR9 agonism with PD-1 blockade for anti-PD-1 refractory Merkel cell carcinoma (MCC) and cutaneous squamous cell carcinoma (CSCC). American Society of Clinical Oncology (2020).

  46. Carbone, C. et al. Intratumoral injection of TLR9 agonist promotes an immunopermissive microenvironment transition and causes cooperative antitumor activity in combination with anti-PD1 in pancreatic cancer. J. Immunother. Cancer https://doi.org/10.1136/jitc-2021-002876 (2021).

    Google Scholar 

  47. Dongye, Z., Li, J. & Wu, Y. Toll-like receptor 9 agonists and combination therapies: Strategies to modulate the tumour immune microenvironment for systemic anti-tumour immunity. Br. J. Cancer 127(9), 1584–1594 (2022).

    Google Scholar 

  48. Rolfo, C., Giovannetti, E., Martinez, P., McCue, S. & Naing, A. Applications and clinical trial landscape using Toll-like receptor agonists to reduce the toll of cancer. NPJ Precis. Oncol. 7(1), 26. https://doi.org/10.1038/s41698-023-00364-1 (2023).

    Google Scholar 

  49. Spitzer, M. H. et al. Systemic immunity is required for effective cancer immunotherapy. Cell 168(3), 487–502 (2017).

    Google Scholar 

  50. Drozdov, A. S., Nikitin, P. I. & Rozenberg, J. M. Systematic review of cancer targeting by nanoparticles revealed a global association between accumulation in tumors and spleen. Int. J. Mol. Sci. 22(23), 13011. https://doi.org/10.3390/ijms222313011 (2021).

    Google Scholar 

  51. Wu, M. et al. Spleen-targeted neoantigen DNA vaccine for personalized immunotherapy of hepatocellular carcinoma. EMBO Mol. Med. 15(10), e16836. https://doi.org/10.15252/emmm.202216836 (2023).

    Google Scholar 

  52. de Jong, S. et al. Liposomal murine CpG DNA induces an anti-tumor immune response in a syngeneic mouse model of colon carcinoma. Cancer Immunol. Immunother. 56(8), 1251–1264 (2007).

    Google Scholar 

  53. Chen, P. et al. Maximizing TLR9 activation in cancer immunotherapy with dual-adjuvanted spherical nucleic acids. Nano Lett. 22(10), 4058–4066 (2022).

    Google Scholar 

  54. Krieg, A. M. Development of TLR9 agonists for cancer therapy. J. Clin. Investig. 117(5), 1184–1194 (2007).

    Google Scholar 

  55. Hirsh, V. M17-04 novel vaccines and immunotherapy, TLR9 agonists. J. Thorac. Oncol. 2(8 Suppl 4), s201 (2007).

    Google Scholar 

  56. Chuang, Y.-C. et al. Adjuvant effect of toll-like receptor 9 activation on cancer immunotherapy using checkpoint blockade. Front. Immunol. 11, 1075. https://doi.org/10.3389/fimmu.2020.01075 (2020).

    Google Scholar 

  57. Miles, M. A. et al. TLR9 monotherapy in immune-competent mice suppresses orthotopic prostate tumor development. Cells https://doi.org/10.3390/cells13010097 (2024).

    Google Scholar 

  58. Boven, L., Montagne, L., Nottet, H. & De Groot, C. Macrophage inflammatory protein-1 α (MIP-1 α), MIP-1 β, and RANTES mRNA semiquantification and protein expression in active demyelinating multiple sclerosis (MS) lesions. Clin. Exp. Immunol. 122(2), 257–263 (2000).

    Google Scholar 

  59. Krieg, A. M. et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374(6522), 546–549 (1995).

    Google Scholar 

  60. Kadowaki, N., Antonenko, S. & Liu, Y. J. Distinct CpG DNA and polyinosinic–polycytidylic acid double-stranded RNA, respectively, stimulate CD11c– type 2 dendritic cell precursors and CD11c+ dendritic cells to produce type I IFN. J. Immunol. 166(4), 2291–2295 (2001).

    Google Scholar 

  61. Kazemi, M. H. et al. Tumor-infiltrating lymphocytes for treatment of solid tumors: It takes two to tango?. Front. Immunol. https://doi.org/10.3389/fimmu.2022.1018962 (2022).

    Google Scholar 

  62. Zhao, Y. et al. Tumor infiltrating lymphocyte (TIL) therapy for solid tumor treatment: progressions and challenges. Cancers (Basel) https://doi.org/10.3390/cancers14174160 (2022).

    Google Scholar 

  63. Wang, Z.-T. et al. Tumor immunity: A brief overview of tumor-infiltrating immune cells and research advances into tumor-infiltrating lymphocytes in gynecological malignancies. Exp. Ther. Med. 27(4), 1–15 (2024).

    Google Scholar 

  64. Whiteside, T. L. Tumor-Infiltrating Lymphocytes and Their Role in Solid Tumor Progression 89–106 (Springer, 2022).

    Google Scholar 

  65. Bai, Z. et al. Tumor-infiltrating lymphocytes in colorectal cancer: The fundamental indication and application on immunotherapy. Front. Immunol. https://doi.org/10.3389/fimmu.2021.808964 (2022).

    Google Scholar 

  66. Kang, S. et al. The significance of microsatellite instability in colorectal cancer after controlling for clinicopathological factors. Medicine https://doi.org/10.1097/MD.0000000000010019 (2018).

    Google Scholar 

  67. Heregger, R. et al. Unraveling resistance to immunotherapy in MSI-high colorectal cancer. Cancers (Basel) https://doi.org/10.3390/cancers15205090 (2023).

    Google Scholar 

  68. Schoenfeld, A. J. et al. Lifileucel, an autologous tumor-infiltrating lymphocyte monotherapy, in patients with advanced non–small cell lung cancer resistant to immune checkpoint inhibitors. Cancer Discov. 14(8), 1389–1402 (2024).

    Google Scholar 

  69. Fridman, W. H., Pagès, F., Sautès-Fridman, C. & Galon, J. The immune contexture in human tumours: Impact on clinical outcome. Nat. Rev. Cancer. 12(4), 298–306 (2012).

    Google Scholar 

  70. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515(7528), 568–571 (2014).

    Google Scholar 

  71. Jeon, S. Y., Shin, H. S., Lee, H., Lee, J. O. & Kim, Y. S. The anti-tumor effect of the IFNγ/Fas chimera expressed on CT26 tumor cells. Anim. Cells Syst. (Seoul) 29(1), 46–56 (2025).

    Google Scholar 

  72. Domankevich, V. et al. Combining alpha radiation based brachytherapy with immunomodulators promotes complete tumor regression in mice via tumor specific long term immune response. Cancer Immunol. Immunother. 68(12), 1949–1958 (2019).

    Google Scholar 

  73. Sparwasser, T. et al. Immunostimulatory CpG-oligodeoxynucleotides cause extramedullary murine hemopoiesis. J. Immunol. 162, 2368 (1999).

    Google Scholar 

Download references