Intrinsically colored artificial silk fibers made from mini-spidroin fusion proteins

intrinsically-colored-artificial-silk-fibers-made-from-mini-spidroin-fusion-proteins
Intrinsically colored artificial silk fibers made from mini-spidroin fusion proteins

References

  1. Gosline, J. M., Guerette, P. A., Ortlepp, C. S. & Savage, K. N. The mechanical design of spider silks: from fibroin sequence to mechanical function. J. Exp. Biol. 202, 3295–3303 (1999).

    Google Scholar 

  2. Braxton, T., Holland, C. & Greco, G. The circular argument behind spider and silkworm silk mechanical properties. Mater. Des. 260, 115224 (2025).

    Google Scholar 

  3. Breslauer, D. N. Current Progress on Scale-Up and Commercialization of Microbially-Produced Silk. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202408386 (2024).

    Google Scholar 

  4. Guessous, G., Blake, L., Bui, A., Woo, Y. & Manzanarez, G. Disentangling the web: an interdisciplinary review on the potential and feasibility of spider silk bioproduction. Acs Biomater. Sci. Eng. 10, 5412–5438 (2024).

    Google Scholar 

  5. Schmuck, B. et al. Strategies for making high-performance artificial spider silk fibers. Adv. Funct. Mater. 34, 2305040 (2024).

    Google Scholar 

  6. Schiller, T. & Scheibel, T. Bioinspired and biomimetic protein-based fibers and their applications. Commun. Mater. 5, 56 (2024).

  7. Andersson, M. et al. Biomimetic spinning of artificial spider silk from a chimeric minispidroin. Nat. Chem. Biol. 13, 262–264 (2017).

    Google Scholar 

  8. Schmuck, B. et al. High-yield production of a super-soluble miniature spidroin for biomimetic high-performance materials. Mater. Today 50, 16–23 (2021).

    Google Scholar 

  9. Pasupuleti, R. et al. Site-specific functionalization of recombinant spider silk using enzymatic sortase coupling. Acs Omega 10, 5943–5952 (2025).

    Google Scholar 

  10. Fan, R. X. et al. Sustainable spinning of artificial spider silk fibers with excellent toughness and inherent potential for functionalization. Adv. Funct. Mater. 35, https://doi.org/10.1002/adfm.202410415 (2025).

  11. Bowen, C. H. et al. Recombinant spidroins fully replicate primary mechanical properties of natural spider silk. Biomacromolecules 19, 3853–3860 (2018).

    Google Scholar 

  12. Li, J. Y. et al. Microbially synthesized polymeric amyloid fiber promotes β-nanocrystal formation and displays gigapascal tensile strength. Acs Nano 15, 11843–11853 (2021).

    Google Scholar 

  13. Xia, X. X. et al. Native-sized recombinant spider silk protein produced in metabolically engineered results in a strong fiber. Proc. Natl. Acad. Sci. USA 107, 14059–14063 (2010).

    Google Scholar 

  14. Nakamura, H. et al. Correlating mechanical properties and sequence motifs in artificial spider silk by targeted motif substitution. Acs Biomater. Sci. Eng. https://doi.org/10.1021/acsbiomaterials.4c01389 (2024).

    Google Scholar 

  15. Orlandi, V. T., Martegani, E., Giaroni, C., Baj, A. & Bolognese, F. Bacterial pigments: a colorful palette reservoir for biotechnological applications. Biotechnol. Appl. Bioc 69, 981–1001 (2022).

    Google Scholar 

  16. Ziarani, G. M., Moradi, R., Lashgari, N. & Kruger, H. G. in Metal-Free Synthetic Organic Dyes (eds Ghodsi Mohammadi Ziarani, Razieh Moradi, Negar Lashgari, & Hendrik G. Kruger) 1–7 (Elsevier, 2018).

  17. Islam, T., Repon, M. R., Islam, T., Sarwar, Z. & Rahman, M. M. Impact of textile dyes on health and ecosystem: a review of structure, causes, and potential solutions. Environ. Sci. Pollut. R. 30, 9207–9242 (2023).

    Google Scholar 

  18. Raja, A. S. M., Arputharaj, A., Saxena, S. & Patil, P. G. in Water in Textiles and Fashion (ed Subramanian Senthilkannan Muthu) 155–173 (Woodhead Publishing, 2019).

  19. Ammayappan, L., Jose, S. & Arputha Raj, A. in Green Fashion: Volume 1 (eds Subramanian Senthilkannan Muthu & Miguel Angel Gardetti) 185–216 (Springer Singapore, 2016).

  20. Lara, L., Cabral, I. & Cunha, J. Ecological approaches to textile dyeing: a review. Sustainability-Basel 14, https://doi.org/10.3390/su14148353 (2022).

  21. Fried, R., Oprea, I., Fleck, K. & Rudroff, F. Biogenic colourants in the textile industry – a promising and sustainable alternative to synthetic dyes. Green. Chem. 24, 13–35 (2022).

    Google Scholar 

  22. Yang, D., Park, S. Y. & Lee, S. Y. Production of rainbow colorants by metabolically engineered. Adv. Sci. 8, https://doi.org/10.1002/advs.202100743 (2021).

  23. Liljeruhm, J. et al. Engineering a palette of eukaryotic chromoproteins for bacterial synthetic biology. J. Biol. Eng. 12, https://doi.org/10.1186/s13036-018-0100-0 (2018).

  24. Watkins, T., Moffitt, K., Speight, R. E. & Navone, L. Chromogenic fusion proteins as alternative textiles dyes. Biotechnol. Bioeng. 121, 2820–2832 (2024).

    Google Scholar 

  25. Arndt, T. et al. Engineered spider silk proteins for biomimetic spinning of fibers with toughness equal to dragline silks. Adv. Funct. Mater. 32, 2200986 (2022).

    Google Scholar 

  26. Schmuck, B. et al. Impact of physio-chemical spinning conditions on the mechanical properties of biomimetic spider silk fibers. Commun. Mater. 3, 83 (2022).

  27. Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    Google Scholar 

  28. Edlund, A. M., Jones, J., Lewis, R. & Quinn, J. C. Economic feasibility and environmental impact of synthetic spider silk production from Escherichia coli. N. Biotechnol. 42, 12–18 (2018).

    Google Scholar 

  29. Gao, Z. W. et al. Structural characterization of minor ampullate spidroin domains and their distinct roles in fibroin solubility and fiber formation. Plos One 8, https://doi.org/10.1371/journal.pone.0056142 (2013).

  30. Hagn, F. et al. A conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature 465, 239–U131 (2010).

    Google Scholar 

  31. Greco, G., Schmuck, B., Jalali, S. K., Pugno, N. M. & Rising, A. Influence of experimental methods on the mechanical properties of silk fibers: a systematic literature review and future road map. Biophys. Rev. (Melville) 4, 031301 (2023).

    Google Scholar 

  32. Greco, G., Mirbaha, H., Schmuck, B., Rising, A. & Pugno, N. M. Artificial and natural silk materials have high mechanical property variability regardless of sample size. Sci Rep-Uk 12, https://doi.org/10.1038/s41598-022-07212-5 (2022).

  33. Schmuck, B., Greco, G., Shilkova, O. & Rising, A. Effects of mini-spidroin repeat region on the mechanical properties of artificial spider silk fibers. ACS Omega 9, 42423–42432 (2024).

    Google Scholar 

  34. Jansson, R., Courtin, C. M., Sandgren, M. & Hedhammar, M. Rational design of spider silk materials genetically fused with an enzyme. Adv. Funct. Mater. 25, 5343–5352 (2015).

    Google Scholar 

  35. Humenik, M., Mohrand, M. & Scheibel, T. Self-assembly of spider silk-fusion proteins comprising enzymatic and fluorescence activity. Bioconjug. Chem. 29, 898–904 (2018).

    Google Scholar 

  36. da Silva, A. J. et al. Non-conventional induction strategies for production of subunit swine erysipelas vaccine antigen in fed-batch cultures. Springerplus 2, https://doi.org/10.1186/2193-1801-2-322 (2013).

  37. Gasteiger, E. et al. in The Proteomics Protocols Handbook (Walker, J. M. ed) 571–607 (Humana Press, 2005).

  38. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Google Scholar 

  39. Greco, G. et al. Properties of biomimetic artificial spider silk fibers tuned by PostSpin Bath incubation. Molecules 25, https://doi.org/10.3390/molecules25143248 (2020).

  40. Jafari, M. J. et al. Force-induced structural changes in spider silk fibers introduced by ATR-FTIR spectroscopy. Acs Appl. Polym. Mater. 5, 9433–9444 (2023).

    Google Scholar 

  41. Rana, M. S., Wang, X. Y. & Banerjee, A. An improved strategy for fluorescent tagging of membrane proteins for overexpression and purification in mammalian cells. Biochemistry 57, 6741–6751 (2018).

    Google Scholar 

Download references