References
-
Gosline, J. M., Guerette, P. A., Ortlepp, C. S. & Savage, K. N. The mechanical design of spider silks: from fibroin sequence to mechanical function. J. Exp. Biol. 202, 3295–3303 (1999).
-
Braxton, T., Holland, C. & Greco, G. The circular argument behind spider and silkworm silk mechanical properties. Mater. Des. 260, 115224 (2025).
-
Breslauer, D. N. Current Progress on Scale-Up and Commercialization of Microbially-Produced Silk. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202408386 (2024).
-
Guessous, G., Blake, L., Bui, A., Woo, Y. & Manzanarez, G. Disentangling the web: an interdisciplinary review on the potential and feasibility of spider silk bioproduction. Acs Biomater. Sci. Eng. 10, 5412–5438 (2024).
-
Schmuck, B. et al. Strategies for making high-performance artificial spider silk fibers. Adv. Funct. Mater. 34, 2305040 (2024).
-
Schiller, T. & Scheibel, T. Bioinspired and biomimetic protein-based fibers and their applications. Commun. Mater. 5, 56 (2024).
-
Andersson, M. et al. Biomimetic spinning of artificial spider silk from a chimeric minispidroin. Nat. Chem. Biol. 13, 262–264 (2017).
-
Schmuck, B. et al. High-yield production of a super-soluble miniature spidroin for biomimetic high-performance materials. Mater. Today 50, 16–23 (2021).
-
Pasupuleti, R. et al. Site-specific functionalization of recombinant spider silk using enzymatic sortase coupling. Acs Omega 10, 5943–5952 (2025).
-
Fan, R. X. et al. Sustainable spinning of artificial spider silk fibers with excellent toughness and inherent potential for functionalization. Adv. Funct. Mater. 35, https://doi.org/10.1002/adfm.202410415 (2025).
-
Bowen, C. H. et al. Recombinant spidroins fully replicate primary mechanical properties of natural spider silk. Biomacromolecules 19, 3853–3860 (2018).
-
Li, J. Y. et al. Microbially synthesized polymeric amyloid fiber promotes β-nanocrystal formation and displays gigapascal tensile strength. Acs Nano 15, 11843–11853 (2021).
-
Xia, X. X. et al. Native-sized recombinant spider silk protein produced in metabolically engineered results in a strong fiber. Proc. Natl. Acad. Sci. USA 107, 14059–14063 (2010).
-
Nakamura, H. et al. Correlating mechanical properties and sequence motifs in artificial spider silk by targeted motif substitution. Acs Biomater. Sci. Eng. https://doi.org/10.1021/acsbiomaterials.4c01389 (2024).
-
Orlandi, V. T., Martegani, E., Giaroni, C., Baj, A. & Bolognese, F. Bacterial pigments: a colorful palette reservoir for biotechnological applications. Biotechnol. Appl. Bioc 69, 981–1001 (2022).
-
Ziarani, G. M., Moradi, R., Lashgari, N. & Kruger, H. G. in Metal-Free Synthetic Organic Dyes (eds Ghodsi Mohammadi Ziarani, Razieh Moradi, Negar Lashgari, & Hendrik G. Kruger) 1–7 (Elsevier, 2018).
-
Islam, T., Repon, M. R., Islam, T., Sarwar, Z. & Rahman, M. M. Impact of textile dyes on health and ecosystem: a review of structure, causes, and potential solutions. Environ. Sci. Pollut. R. 30, 9207–9242 (2023).
-
Raja, A. S. M., Arputharaj, A., Saxena, S. & Patil, P. G. in Water in Textiles and Fashion (ed Subramanian Senthilkannan Muthu) 155–173 (Woodhead Publishing, 2019).
-
Ammayappan, L., Jose, S. & Arputha Raj, A. in Green Fashion: Volume 1 (eds Subramanian Senthilkannan Muthu & Miguel Angel Gardetti) 185–216 (Springer Singapore, 2016).
-
Lara, L., Cabral, I. & Cunha, J. Ecological approaches to textile dyeing: a review. Sustainability-Basel 14, https://doi.org/10.3390/su14148353 (2022).
-
Fried, R., Oprea, I., Fleck, K. & Rudroff, F. Biogenic colourants in the textile industry – a promising and sustainable alternative to synthetic dyes. Green. Chem. 24, 13–35 (2022).
-
Yang, D., Park, S. Y. & Lee, S. Y. Production of rainbow colorants by metabolically engineered. Adv. Sci. 8, https://doi.org/10.1002/advs.202100743 (2021).
-
Liljeruhm, J. et al. Engineering a palette of eukaryotic chromoproteins for bacterial synthetic biology. J. Biol. Eng. 12, https://doi.org/10.1186/s13036-018-0100-0 (2018).
-
Watkins, T., Moffitt, K., Speight, R. E. & Navone, L. Chromogenic fusion proteins as alternative textiles dyes. Biotechnol. Bioeng. 121, 2820–2832 (2024).
-
Arndt, T. et al. Engineered spider silk proteins for biomimetic spinning of fibers with toughness equal to dragline silks. Adv. Funct. Mater. 32, 2200986 (2022).
-
Schmuck, B. et al. Impact of physio-chemical spinning conditions on the mechanical properties of biomimetic spider silk fibers. Commun. Mater. 3, 83 (2022).
-
Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).
-
Edlund, A. M., Jones, J., Lewis, R. & Quinn, J. C. Economic feasibility and environmental impact of synthetic spider silk production from Escherichia coli. N. Biotechnol. 42, 12–18 (2018).
-
Gao, Z. W. et al. Structural characterization of minor ampullate spidroin domains and their distinct roles in fibroin solubility and fiber formation. Plos One 8, https://doi.org/10.1371/journal.pone.0056142 (2013).
-
Hagn, F. et al. A conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature 465, 239–U131 (2010).
-
Greco, G., Schmuck, B., Jalali, S. K., Pugno, N. M. & Rising, A. Influence of experimental methods on the mechanical properties of silk fibers: a systematic literature review and future road map. Biophys. Rev. (Melville) 4, 031301 (2023).
-
Greco, G., Mirbaha, H., Schmuck, B., Rising, A. & Pugno, N. M. Artificial and natural silk materials have high mechanical property variability regardless of sample size. Sci Rep-Uk 12, https://doi.org/10.1038/s41598-022-07212-5 (2022).
-
Schmuck, B., Greco, G., Shilkova, O. & Rising, A. Effects of mini-spidroin repeat region on the mechanical properties of artificial spider silk fibers. ACS Omega 9, 42423–42432 (2024).
-
Jansson, R., Courtin, C. M., Sandgren, M. & Hedhammar, M. Rational design of spider silk materials genetically fused with an enzyme. Adv. Funct. Mater. 25, 5343–5352 (2015).
-
Humenik, M., Mohrand, M. & Scheibel, T. Self-assembly of spider silk-fusion proteins comprising enzymatic and fluorescence activity. Bioconjug. Chem. 29, 898–904 (2018).
-
da Silva, A. J. et al. Non-conventional induction strategies for production of subunit swine erysipelas vaccine antigen in fed-batch cultures. Springerplus 2, https://doi.org/10.1186/2193-1801-2-322 (2013).
-
Gasteiger, E. et al. in The Proteomics Protocols Handbook (Walker, J. M. ed) 571–607 (Humana Press, 2005).
-
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
-
Greco, G. et al. Properties of biomimetic artificial spider silk fibers tuned by PostSpin Bath incubation. Molecules 25, https://doi.org/10.3390/molecules25143248 (2020).
-
Jafari, M. J. et al. Force-induced structural changes in spider silk fibers introduced by ATR-FTIR spectroscopy. Acs Appl. Polym. Mater. 5, 9433–9444 (2023).
-
Rana, M. S., Wang, X. Y. & Banerjee, A. An improved strategy for fluorescent tagging of membrane proteins for overexpression and purification in mammalian cells. Biochemistry 57, 6741–6751 (2018).
