Invention and global impact of bioinspired 2-methacryloyloxyethyl phosphorylcholine polymers: molecular design, functions, and implementation in medical devices

invention-and-global-impact-of-bioinspired-2-methacryloyloxyethyl-phosphorylcholine-polymers:-molecular-design,-functions,-and-implementation-in-medical-devices
Invention and global impact of bioinspired 2-methacryloyloxyethyl phosphorylcholine polymers: molecular design, functions, and implementation in medical devices
  • Fang RH, Jiang Y, Fang JC, Zhang L. Cell membrane-derived nanomaterials for biomedical applications. Biomaterials. 2017;128:69–83.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Ruan J, Lv G, Shan Q, Fan Z, Wang H, et al. Cell membrane-based biomimetic nanosystems for advanced drug delivery in cancer therapy: a comprehensive review. Colloids Surf B Biointerfaces. 2022;215:112503.

    Article  PubMed  Google Scholar 

  • Miyata Y, Segawa K. Protocol to analyze lipid asymmetry in the plasma membrane. STAR Protoc. 2022;3:101870.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weinstein JN, Leserman LD. Liposomes as drug carriers in cancer chemotherapy. Pharm Ther. 1984;24:207–33.

    Article  Google Scholar 

  • Yamaguchi T, Mizushima Y. Lipid microspheres for drug delivery from the pharmaceutical viewpoint. Crit Rev Ther Drug Carr Syst. 1994;11:215–29.

    Google Scholar 

  • Hub HH, Hupfer B, Koch H, Ringsdorf H. Polymerizable phospholipid analogues—New stable biomembrane and cell models. Angew Chem Int Ed Engl. 1980;19:938–40.

    Article  PubMed  Google Scholar 

  • Hayward JA, Johnston DS, Chapman D. Polymeric phospholipids as new biomaterials. Ann N Y Acad Sci. 1985;446:267–81.

    Article  PubMed  Google Scholar 

  • Ishihara K, Ueda T, Nakabayashi N. Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polym J. 1990;23:355–60.

    Article  Google Scholar 

  • Bonte F, Hsu MJ, Papp A, Wu K, Regen SL, Juliano RL. Interactions of polymerizable phosphatidylcholine vesicles with blood components: relevance to biocompatibility. Biochim Biophys Acta. 1987;900:1–9.

    Article  PubMed  Google Scholar 

  • Ishihara K. Revolutionary advances in 2-methacryloyloxyethyl phosphorylcholine polymers as biomaterials. J Biomed Mater Res A. 2019;107:933–43.

    Article  PubMed  Google Scholar 

  • Ueda T, Oshida H, Kurita K, Ishihara K, Nakabayashi N. Preparation of 2-methacryloyloxyethyl phosphorylcholine copolymers with alkyl methacrylates and their blood compatibility. Polym J. 2002;24:1259–69.

    Article  Google Scholar 

  • Lobb EJ, Ma I, Billingham NC, Armes SP, Lewis AL. Facile synthesis of well-defined, biocompatible phosphorylcholine-based methacrylate copolymers via atom transfer radical polymerization at 20 °C. J Am Chem Soc. 2001;123:7913–14.

    Article  PubMed  Google Scholar 

  • Ma I, Lobb EJ, Billingham NC, Armes SP, Lewis AL, Lloyd AW, et al. Synthesis of biocompatible polymers. 1. Homopolymerization of 2-methacryloyloxyethyl phosphorylcholine via ATRP in protic solvents: an optimization study. Macromolecules. 2002;35:9306–14.

    Article  Google Scholar 

  • Adibnia V, Olszewski M, De Crescenzo G, Matyjaszewski K, Banquy X. Superlubricity of zwitterionic bottlebrush polymers in the presence of multivalent ions. J Am Chem Soc. 2020;142:14843–47.

    Article  PubMed  Google Scholar 

  • Chantasirichot S, Inoue Y, Ishihara K. Photoinduced atom transfer radical polymerization in a polar solvent to synthesize a water-soluble poly(2-methacryloyloxyethyl phosphorylcholine) and its block-type copolymers. Polymer. 2015;61:55–60.

    Article  Google Scholar 

  • Yusa SI, Fukuda K, Yamamoto T, Ishihara K, Morishima Y. Synthesis of well-defined amphiphilic block copolymers having phospholipid polymer sequences as a novel biocompatible polymer micelle reagent. Biomacromolecules. 2005;6:663–70.

    Article  PubMed  Google Scholar 

  • Inoue Y, Watanabe J, Takai M, Yusa SI, Ishihara K. Synthesis of sequence-controlled copolymers from extremely polar and apolar monomers by living radical polymerization and their phase-separated structures. J Polym Sci Part A: Polym Chem. 2005;43:6073–83.

    Article  Google Scholar 

  • Bhuchar N, Deng Z, Ishihara K, Narain R. Detailed study of the reversible addition-fragmentation chain transfer polymerization and co-polymerization of 2-methacryloyloxyethyl phosphorylcholine. Polym Chem. 2011;2:632–39.

    Article  Google Scholar 

  • Ishihara K, Iwasaki Y, Nakabayashi N. Polymeric lipid nanosphere consisting of water soluble poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate). Polym J. 1999;31:1231–6.

    Article  Google Scholar 

  • Monge S, Canniccioni B, Graillot A, Robin JJ. Phosphorus-containing polymers: a great opportunity for the biomedical field. Biomacromolecules. 2011;12:1973–82.

    Article  PubMed  Google Scholar 

  • Iwasaki Y. Photoassisted Surface modification with zwitterionic phosphorylcholine polymers for the fabrication of ideal biointerfaces. Langmuir. 2023;39:15417–30.

    Article  PubMed  Google Scholar 

  • Seetasang S, Xu Y. Recent progress and perspectives in applications of 2-methacryloyloxyethyl phosphorylcholine polymers in biodevices at small scales. J Mater Chem B. 2022;10:2323–37.

    Article  PubMed  Google Scholar 

  • Matsuno R, Takami K, Ishihara K. Simple synthesis of a library of zwitterionic surfactants via Michael-type addition of methacrylate and alkane thiol compounds. Langmuir. 2010;26:13028–32.

    Article  PubMed  Google Scholar 

  • Takami K, Matsuno R, Ishihara K. Synthesis of polyurethanes by polyaddition using diol compounds with methacrylate-derived functional groups. Polymer. 2011;52:5445–51.

    Article  Google Scholar 

  • Ye SH, Jang YS, Yun YH, Shankarraman V, Woolley JR, Hong Y, et al. Surface modification of a biodegradable magnesium alloy with phosphorylcholine (PC) and sulfobetaine (SB) functional macromolecules for reduced thrombogenicity and acute corrosion resistance. Langmuir. 2013;29:8320–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kadoma Y, Nakabayashi N, Masuhara E, Yamauchi J. Synthesis and hemolysis test of the polymer containing phosphorylcholine groups. Kobunshi Ronbunshu. 1978;35:423 (Japanese Journal of Polymer Science and Technology)(in Japanese).

    Article  Google Scholar 

  • Fukushima S, Kadoma Y, Nakabayashi N. Interaction between polymer containing phosphorylcholine group and cells. Kobunshi Ronbunshu. 1983;40:785–93. (Japanese Journal of Polymer Science and Technology)(in Japanese).

    Article  Google Scholar 

  • Nakaya T, Toyoda H, Imoto M. Polymeric phospholipid analogues XIII. Synthesis and properties of vinyl polymers containing phosphatidyl choline groups. Polym J. 1986;18:881–5.

    Article  Google Scholar 

  • Yang H, Zheng Q, Cheng R. New insight into “polyelectrolyte effect. Colloids Surf A Physicochem Eng Asp. 2012;407:1–8.

    Article  Google Scholar 

  • Ratner BD. Surface modification of polymers: chemical, biological and surface analytical challenges. Biosens Bioelectron. 1995;10:797–804.

    Article  PubMed  Google Scholar 

  • Amoako K, Ukita R, Cook KE. Antifouling zwitterionic polymer coatings for blood-bearing medical devices. Langmuir. 2025;41:2994–3006.

    Article  PubMed  PubMed Central  Google Scholar 

  • Iwashita H, Itokawa T, Suzuki T, Okajima Y, Kakisu K, Hori Y. Evaluation of in vitro wettability of soft contact lenses using tear supplements. Eye Contact Lens. 2021;47:244–8.

    Article  PubMed  Google Scholar 

  • Fujiwara N, Yumoto H, Miyamoto K, Hirota K, Nakae H, Tanaka S, et al. 2-Methacryloyloxyethyl phosphorylcholine(MPC)-polymer suppresses an increase of oral bacteria: a single-blind, crossover clinical trial. Clin Oral Investig. 2019;23:739–6.

    Article  PubMed  Google Scholar 

  • Ayaki M, Iwasawa A, Niwano Y. Cytotoxicity assays of new artificial tears containing 2-methacryloyloxyethyl phosphorylcholine polymer for ocular surface cells. Jpn J Ophthalmol. 2011;55:541–6.

    Article  PubMed  Google Scholar 

  • Kanekura T, Nagata Y, Miyoshi H, Ishihara K, Nakabayashi N, Kanzaki T. Beneficial effects of synthetic phospholipid polymer, poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate), on stratum corneum function. Clin Exp Dermatol. 2002;27:230–4.

    Article  PubMed  Google Scholar 

  • Cho Lee AR, Moon H, Ishihara K. Stabilization of lipid lamellar bilayer structure of stratum corneum modulated by poly(2-methacryloyloxyethyl phosphorylcholine) in relation to skin hydration and skin protection. Tissue Eng Regen Med. 2021;18:953–62.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kihara S, Yamazaki K, Litwak KN, Litwak P, Kameneva MV, Ushiyama H, et al. In vivo evaluation of a MPC polymer coated continuous flow left ventricular assist system. Artif Organs. 2003;27:188–92.

    Article  PubMed  Google Scholar 

  • Fujii K, Matsumoto HN, Koyama Y, Iwasaki Y, Ishihara K, Takakuda K. Prevention of biofilm formation with a coating of 2-methacryloyloxyethyl phosphorylcholine polymer. J Vet Med Sci. 2008;70:167–73.

    Article  PubMed  Google Scholar 

  • Kaneko T, Saito T, Shobuike T, Miyamoto H, Matsuda J, Fukazawa K, et al. 2-Methacryloyloxyethyl phosphorylcholine polymer coating inhibits bacterial adhesion and biofilm formation on a suture: An in vitro and in vivo study. Biomed Res Int. 2020;2020:5639651.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pappalardo F, Della Valle P, Crescenzi G, Corno C, Franco A, Torracca L, et al. Phosphorylcholine coating may limit thrombin formation during high-risk cardiac surgery: a randomized controlled trial. Ann Thorac Surg. 2006;81:886–91.

    Article  PubMed  Google Scholar 

  • Iida Y, Hongo K, Onoda T, Kita Y, Ishihara Y, Takabayashi N, et al. Use of catheter with 2-methacryloyloxyethyl phosphorylcholine polymer coating is associated with long-term availability of central venous port. Sci Rep. 2021;11:5385.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishida K, Sakakida M, Ichinose K, Uemura T, Uehara M, Kajiwara K, et al. Development of a ferrocene-mediated needle-type glucose sensor covered with newly designed biocompatible membrane, 2-methacryloyloxyethyl phosphorylcholine-con-butyl methacrylate. Med Prog Technol. 1995;21:91–103.

    PubMed  Google Scholar 

  • Ranucci M, Isgrò G, Soro G, Canziani A, Menicanti L, Frigiola A. Reduced systemic heparin dose with phosphorylcholine coated closed circuit in coronary operations. Int J Artif Organs. 2004;27:311–9.

    Article  PubMed  Google Scholar 

  • Marguerite S, Levy F, Quessard A, Dupeyron JP, Gros C, Steib A. Impact of a phosphorylcholine-coated cardiac bypass circuit on blood loss and platelet function: a prospective, randomized study. J Extra Corpor Technol. 2012;44:5–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishihara K, Fukumoto K, Miyazaki H, Nakabayashi N. Improvement of hemocompatibility on a cellulose dialysis membrane with a novel biomedical polymer having a phospholipid polar group. Artif Organs. 1994;18:559–64.

    Article  PubMed  Google Scholar 

  • Whelan DM, van der Giessen WJ, Krabbendam SC, van Vliet EA, Verdouw PD, Serruys PW, et al. Biocompatibility of phosphorylcholine coated stents in normal porcine coronary arteries. Heart. 2000;83:338–45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Collingwood R, Gibson L, Sedlik S, Virmani R, Carter AJ. Stent-based delivery of ABT-578 via a phosphorylcholine surface coating reduces neointimal formation in the porcine coronary model. Catheter Cardiovasc Inter. 2005;65:227–32.

    Google Scholar 

  • Hagen MW, Girdhar G, Wainwright J, Hinds MT. Thrombogenicity of flow diverters in an ex vivo shunt model: effect of phosphorylcholine surface modification. J Neurointerv Surg. 2017;9:1006–11.

    Article  PubMed  Google Scholar 

  • Ikeya K, Iwasa F, Inoue Y, Fukunishi M, Takahashi N, Ishihara K, et al. Inhibition of denture plaque deposition on complete dentures by 2-methacryloyloxyethyl phosphorylcholine polymer coating: A clinical study. J Prosthet Dent. 2018;119:67–74.

    Article  PubMed  Google Scholar 

  • Moro T, Takatori Y, Ishihara K, Konno T, Takigawa Y, Matsushita T, et al. Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis. Nat Mater. 2004;3:829–36.

    Article  PubMed  Google Scholar 

  • Ishihara K, Nakabayashi N, Fukumoto K, Aoki J. Improvement of blood compatibility on cellulose dialysis membrane. I. Grafting of 2-methacryloyloxyethyl phosphorylcholine on to a cellulose membrane surface. Biomaterials. 1992;13:145–9.

    Article  PubMed  Google Scholar 

  • Kyomoto M, Ishihara K. Self-initiated surface graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on poly(ether ether ketone) by photoirradiation. ACS Appl Mater Interfaces. 2009;1:537–42.

    Article  PubMed  Google Scholar 

  • Shi X, Cantu-Crouch D, Sharma V, Pruitt J, Yao G, Fukazawa K, et al. Surface characterization of a silicone hydrogel contact lens having bioinspired 2-methacryloyloxyethyl phosphorylcholine polymer layer in hydrated state. Colloids Surf B Biointerfaces. 2021;199:111539.

    Article  PubMed  Google Scholar 

  • Yoneyama T, Ishihara K, Nakabayashi N, Ito M, Mishima Y. Short-term in vivo evaluation of small-diameter vascular prosthesis composed of segmented poly(etherurethane)/2-methacryloyloxyethyl phosphorylcholine polymer blend. J Biomed Mater Res. 1998;43:15–20.

    PubMed  Google Scholar 

  • Hasegawa T, Iwasaki Y, Ishihara K. Preparation and performance of protein-adsorption-resistant asymmetric porous membrane composed of polysulfone/phospholipid polymer blend. Biomaterials. 2001;22:243–51.

    Article  PubMed  Google Scholar 

  • Ueda H, Watanabe J, Konno T, Takai M, Saito A, Ishihara K. Asymmetrically functional surface properties on biocompatible phospholipid polymer membrane for bioartificial kidney. J Biomed Mater Res A. 2006;77:19–27.

    Article  PubMed  Google Scholar 

  • Ishihara K, Nishiuchi D, Watanabe J, Iwasaki Y. Polyethylene/phospholipid polymer alloy as an alternative to poly(vinylchloride)-based materials. Biomaterials. 2004;25:1115–22.

    Article  PubMed  Google Scholar 

  • Iwasaki Y, Nakabayashi N, Ishihara K. In vitro and ex vivo blood compatibility study of 2-methacryloyloxyethyl phosphorylcholine (MPC) copolymer-coated hemodialysis hollow fibers. J Artif Organs. 2003;6:260–6.

    Article  PubMed  Google Scholar 

  • Ye SH, Watanabe J, Takai M, Iwasaki Y, Ishihara K. In situ Modification on Cellulose Acetate Hollow Fiber Membrane Modified Phospholipid Polymer for Biomedical Application. J Membr Sci. 2005;249:133–45.

    Article  Google Scholar 

  • Konno T, Ito T, Takai M, Ishihara K. Enzymatic photochemical sensing using luciferase-immobilized polymer nanoparticles covered with artificial cell membrane. J Biomater Sci Polym Ed. 2006;17:1347–57.

    Article  PubMed  Google Scholar 

  • Shimizu T, Goda T, Minoura N, Takai M, Ishihara K. Super-hydrophilic silicone hydrogels with interpenetrating poly(2-methacryloyloxyethyl phosphorylcholine) networks. Biomaterials. 2010;31:3274–80.

    Article  PubMed  Google Scholar 

  • Iwasaki Y, Aiba Y, Morimoto N, Nakabayashi N, Ishihara K. Semi-interpenetrating polymer networks composed of biocompatible phospholipid polymer and segmented polyurethane. J Biomed Mater Res. 2000;52:701–8.

    PubMed  Google Scholar 

  • Ishihara K. Highly lubricated polymer interfaces for advanced artificial hip joint through biomimetic design. Polym J. 2015;47:585–97.

    Article  Google Scholar 

  • Iwata R, Suk-In P, Hoven VP, Takahara A, Akiyoshi K, Iwasaki Y. Control of nanobiointerfaces generated from well-defined biomimetic polymer brushes for protein and cell manipulations. Biomacromolecules. 2004;5:2308–14.

    Article  PubMed  Google Scholar 

  • Feng W, Zhu S, Ishihara K, Brash JL. Adsorption of fibrinogen and lysozyme on silicon grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom transfer radical polymerization. Langmuir. 2005;21:5980–7.

    Article  PubMed  Google Scholar 

  • Zhang Z, Morse AJ, Armes SP, Lewis AL, Geoghegan M, Leggett GJ. Effect of brush thickness and solvent composition on the friction force response of poly(2-(methacryloyloxy)ethylphosphorylcholine) brushes. Langmuir. 2011;27:2514–21.

    Article  PubMed  Google Scholar 

  • Jiang Y, Su Y, Zhao L, Meng F, Wang Q, Ding C, et al. Preparation and antifouling properties of 2-(meth-acryloyloxy)ethyl cholinephosphate based polymers modified surface with different molecular architectures by ATRP. Colloids Surf B Biointerfaces. 2017;156:87–94.

    Article  PubMed  Google Scholar 

  • Futamura K, Matsuno R, Konno T, Takai M, Ishihara K. Rapid development of hydrophilicity and protein adsorption resistance by polymer surfaces bearing phosphorylcholine and naphthalene groups. Langmuir. 2008;24:10340–4. 16.

    Article  PubMed  Google Scholar 

  • Kobayashi M, Terayama Y, Hosaka N, Kaido M, Suzuki A, Yamada N, et al. Friction behavior of high-density poly(2-methacryloyloxyethyl phosphorylcholine) brush in aqueous media. Soft Matter. 2007;3:740–6.

    Article  PubMed  Google Scholar 

  • Ishihara K, Mu M, Konno T, Inoue Y, Fukazawa K. The unique hydration state of poly(2-methacryloyloxyethyl phosphorylcholine). J Biomater Sci Polym Ed. 2017;28:884–99.

    Article  PubMed  Google Scholar 

  • Kitano H, Imai M, Mori T, Gemmei-Ide M, Yokoyama Y, Ishihara K. Structure of water in the vicinity of phospholipid analogue copolymers as studied by vibrational spectroscopy. Langmuir. 2003;19:10260–6.

    Article  Google Scholar 

  • Kitano H. Characterization of polymer materials based on structure analyses of vicinal water. Polym J. 2016;48:15–24.

    Article  Google Scholar 

  • Shiomoto S, Inoue K, Higuchi H, Nishimura SN, Takaba H, Tanaka M, et al. Characterization of hydration water bound to choline phosphate-containing polymers. Biomacromolecules. 2022;23:2999–3008.

    Article  PubMed  Google Scholar 

  • Ishihara K. Biomimetic polymers with phosphorylcholine groups as biomaterials for medical devices. Proc Jpn Acad, Ser B. 2024;100:579–606.

    Article  Google Scholar 

  • Holmlin RE, Chen X, Chapman RG, Takayama S, Whitesides GM. Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir. 2001;17:2841–50.

    Article  PubMed  Google Scholar 

  • Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM. A survey of structure−property relationships of surfaces that resist the adsorption of protein. Langmuir. 2001;17:5605–20.

    Article  Google Scholar 

  • Ishihara K. Biomimetic materials based on zwitterionic polymers toward human-friendly medical devices. Sci Technol Adv Mater. 2022;23:498–524.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishihara K, Nomura H, Mihara T, Kurita K, Iwasaki Y, Nakabayashi N. Why do phospholipid polymers reduce protein adsorption?. J Biomed Mater Res. 1998;39:323–30.

    PubMed  Google Scholar 

  • Ishihara K, Ziats NP, Tierney BP, Nakabayashi N, Anderson JM. Protein adsorption from human plasma is reduced on phospholipid polymers. J Biomed Mater Res. 1991;25:1397–407.

    Article  PubMed  Google Scholar 

  • Ishihara K. Blood-compatible surfaces with phosphorylcholine-based polymers for cardiovascular medical devices. Langmuir. 2019;35:1778–87.

    Article  PubMed  Google Scholar 

  • Çelebioğlu EC, Blevrakis E, Yilmaz M, Doğan İ, Erkent FD, Kortun Ş, et al. Efficacy and performance of the new pipeline vantage flow diverter stent with shield technology: Short-term results of a single-center experience. Sci Prog. 2025;108:368504251349714.

    Article  PubMed  Google Scholar 

  • Campbell EJ, O’Byrne V, Stratford PW, Quirk I, Vick TA, Wiles MC, et al. Biocompatible surfaces using methacryloylphosphorylcholine laurylmethacrylate copolymer. ASAIO J. 1994;40:M853–7.

    Article  PubMed  Google Scholar 

  • Snyder TA, Tsukui H, Kihara S, Akimoto T, Litwak KN, Kameneva MV, et al. Preclinical biocompatibility assessment of the EVAHEART ventricular assist device: coating comparison and platelet activation. J Biomed Mater Res A. 2007;81:85–92.

    Article  PubMed  Google Scholar 

  • Yamabe T. Artificial organs with nano-technology and development of the new diagnosis tool. Ann NanoBME. 2009;2:1–10.

    Google Scholar 

  • https://www.evaheart-usa.com/clinical-trial?utm_source=chatgpt.com

  • Chen HB, Wang XQ, Du J, Shi J, Ji BY, Shi L, et al. Long-term outcome of EVAHEART I implantable ventricular assist device for the treatment of end stage heart failure: clinical 3-year follow-up results of 15 cases. Zhonghua Xin Xue Guan Bing Za Zhi. Chin J Cardiovascular Dis). 2023;51:393–99. (in Chinese).

    Google Scholar 

  • Lewis AL, Stratford PW. A review on phosphorylcholine-coated stents. J Long Term Eff Med Implants. 2017;27:233–52.

    Article  PubMed  Google Scholar 

  • Song PS, Hahn JY, Kim DI, Song YB, Choi SH, Choi JH, et al. Duration of clopidogrel-based dual antiplatelet therapy and clinical outcomes after endeavor sprint zotarolimus eluting stent implantation in patients presenting with acute coronary syndrome. Eur J Intern Med. 2015;26:521–7.

    Article  PubMed  Google Scholar 

  • Caroff J, Tamura T, King RM. Phosphorylcholine surface modified flow diverter associated with reduced intimal hyperplasia. J Neurointerv Surg. 2018;10:1097–101.

    Article  PubMed  Google Scholar 

  • Ishihara K, Iwasaki Y, Ebihara S, Shindo Y, Nakabayashi N. Photoinduced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on polyethylene membrane surface for obtaining blood cell adhesion resistance. Colloids Surf B Biointerfaces. 2000;18:325–35.

    Article  PubMed  Google Scholar 

  • Kyomoto M, Moro T, Saiga K, Hashimoto M, Ito H, Kawaguchi H, et al. Biomimetic hydration lubrication with various polyelectrolyte layers on cross-linked polyethylene orthopedic bearing materials. Biomaterials. 2012;33:4451–9.

    Article  PubMed  Google Scholar 

  • Moro T, Takatori Y, Kyomoto M, Ishihara K, Hashimoto M, Ito H, et al. Long-term hip simulator testing of the artificial hip joint bearing surface grafted with biocompatible phospholipid polymer. J Orthop Res. 2014;32:369–76.

    Article  PubMed  Google Scholar 

  • Moro T, Takatori Y, Tanaka S, Ishihara K, Oda H, Kim YT, et al. Clinical safety and wear resistance of the phospholipid polymer-grafted highly cross-linked polyethylene liner. J Orthop Res. 2017;35:2007–16.

    Article  PubMed  Google Scholar 

  • Kyomoto M, Moro T, Yamane S, Watanabe K, Hashimoto M, Takatori Y, et al. Poly(2-methacryloyloxyethyl phosphorylcholine) grafting and vitamin E blending for high wear resistance and oxidative stability of orthopedic bearings. Biomaterials. 2014;35:6677–86.

    Article  PubMed  Google Scholar 

  • Kyomoto M, Moro T, Yamane S, Takatori Y, Tanaka S, Ishihara K. A hydrated phospholipid polymer-grafted layer prevents lipid-related oxidative degradation of cross-linked polyethylene. Biomaterials. 2017;112:122–32.

    Article  PubMed  Google Scholar 

  • Kyomoto M, Moro T, Yamane S, Watanabe K, Hashimoto M, Tanaka S, et al. A phospholipid polymer graft layer affords high resistance for wear and oxidation under load bearing conditions. J Mech Behav Biomed Mater. 2018;79:203–12.

    Article  PubMed  Google Scholar 

  • Goda T, Ishihara K. Soft contact lens biomaterials from bioinspired phospholipid polymers. Expert Rev Med Devices. 2006;3:167–74.

    Article  PubMed  Google Scholar 

  • Walsh K, Jones LW, Morgan P, Papas EB, Sulley A. Topical review: Twenty-five years of silicone hydrogel soft contact lenses. Optom Vis Sci. 2025;102:361–74.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishihara K, Shi X, Fukazawa K, Yamaoka T, Yao G, Wu JY. Biomimetic-engineered silicone hydrogel contact lens materials. ACS Appl Bio Mater. 2023;6:3600–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Capote-Puente R, Sánchez-González JM, Sánchez-González MC, Bautista-Llamas MJ. Evaluation of Celligent® biomimetic water gradient contact lens effects on ocular surface and subjective symptoms. Diagnostics (Basel). 2023;13:1258.

    Article  PubMed  Google Scholar 

  • Shi X, Sharma V, Cantu-Crouch D, Yao G, Fukazawa K, Ishihara K, et al. Nanoscaled morphology and mechanical properties of a biomimetic polymer surface on a silicone hydrogel contact lens. Langmuir. 2021;37:13961–7.

    Article  PubMed  Google Scholar 

  • Sharma V, Shi XC, Yao G, Zheng Y, Spencer ND, Wu JY. Fluid confinement within a branched polymer structure enhances tribological performance of a poly(2-methacryloyloxyethyl phosphorylcholine)-surface-modified contact lens. R Soc Open Sci. 2024;11:240957.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang S, Zheng Y, Sharma V, Shows A, Dunbar DC, Shi X, et al. Surface and antifouling properties of a biomimetic reusable contact lens material. ACS Omega. 2025;10:19697–704.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishihara K, Fukazawa K, Sharma V, Liang S, Shows A, Dunbar DC, et al. Antifouling silicone hydrogel contact lenses with a bioinspired 2-methacryloyloxyethyl phosphorylcholine polymer surface. ACS Omega. 2021;6:7058–67.

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris V, Pifer R, Shannon P, Crary M. Comparative evaluation of pseudomonas aeruginosa adhesion to a poly-(2-methacryloyloxyethyl phosphorylcholine)-modified silicone hydrogel contact lens. Vis (Basel). 2023;7:27.

    Google Scholar 

  • Mimura T, Nakagomi R. Comparison of non-water proof mascara adhesion on the surface of different two-week frequent replacement silicone hydrogel contact lenses. Clin Optom (Auckl). 2025;17:73–82.

    Article  PubMed  Google Scholar 

  • Mimura T, Nakagomi R, Fujishima H. Comparison of asian dust adhesion on the urface of different reusable silicone hydrogel contact lenses. Int Ophthalmol. 2025;45:226.

    Article  PubMed  Google Scholar 

  • Sin MC, Chen SH, Chang Y. Hemocompatibility of zwitterionic interfaces and membranes. Polym J. 2014;46:436–43.

    Article  Google Scholar 

  • Hiranphinyophat S, Iwasaki Y. Controlled biointerfaces with biomimetic phosphorus-containing polymers. Sci Technol Adv Mater. 2021;22:301–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moayedi S, Xia W, Lundergan L, Yuan H, Xu J. Zwitterionic polymers for biomedical applications: Antimicrobial and antifouling strategies toward implantable medical devices and drug delivery. Langmuir. 2024;40:23125–45.

    Article  PubMed  Google Scholar 

  • Lv W, Wang Y, Fu H, Liang Z, Huang B, Jiang R, et al. Recent advances of multifunctional zwitterionic polymers for biomedical application. Acta Biomater. 2024;181:19–45.

    Article  PubMed  Google Scholar 

  • Ahmed ST, Madinya JJ, Leckband DE. Ionic strength dependent forces between end-grafted Poly (sulfobetaine) films and mica. J Colloid Interface Sci. 2022;606:298–306.

    Article  PubMed  Google Scholar 

  • Lien C-C, Chen P-J, Venault A, Tang S-H, Fu Y, Dizon GV, et al. A zwitterionic interpenetrating network for improving the blood compatibility of polypropylene membranes applied to leukodepletion. J Membr Sci. 2019;584:148–60.

    Article  Google Scholar 

  • Ye SH, Orizondo RA, De BN, Kim S, Frankowski BJ, Federspiel WJ, et al. Epoxy silane sulfobetaine block copolymers for simple, aqueous thromboresistant coating on ambulatory assist lung devices. J Biomed Mater Res A. 2024;112:99–109.

    Article  PubMed  Google Scholar 

  • Xiang Y, Xu RG, Leng Y. Molecular understanding of ion effect on polyzwitterion conformation in an aqueous environment. Langmuir. 2020;36:7648–57.

    Article  PubMed  Google Scholar 

  • Venault A, Ye CC, Lin YC, Tsai CW, Jhong JF, Ruaan RC, et al. Zwitterionic fibrous polypropylene assembled with amphiphatic carboxybetaine copolymers for hemocompatible blood filtration. Acta Biomater. 2016;40:130–41.

    Article  PubMed  Google Scholar 

  • Lin X, Wu K, Zhou Q, Jain P, Boit MO, Li B, et al. Photoreactive carboxybetaine copolymers impart biocompatibility and inhibit plasticizer leaching on polyvinyl chloride. ACS Appl Mater Interfaces. 2020;12:41026–37.

    Article  PubMed  Google Scholar 

  • Ryujin T, Shimizu T, Miyahara R, Asai D, Shimazui R, Yoshikawa T, et al. Blood retention and antigenicity of polycarboxybetaine-modified liposomes. Int J Pharm. 2020;586:119521.

    Article  PubMed  Google Scholar 

  • Hu G, Emrick T. Functional choline phosphate polymers. J Am Chem Soc. 2020;138:1828–31.

    Article  Google Scholar 

  • Mukai M, Ihara D, Chu CW, Cheng CH, Takahara A. Synthesis and hydration behavior of a hydrolysis-resistant quasi-choline phosphate zwitterionic polymer. Biomacromolecules. 2020;21:2125–31.

    Article  PubMed  Google Scholar 

  • Yu X, Yang X, Horte S, Kizhakkedathu JN, Brooks DE. A thermoreversible poly(choline phosphate) based universal biomembrane adhesive. Macromol Biosci. 2014;14:334–9.

    Article  PubMed  Google Scholar 

  • Yao Y, Dang X, Qiao X, Li R, Chen J, Huang Z, et al. Crosslinked biomimetic coating modified stainless-steel-mesh enables completely self-cleaning separation of crude oil/water mixtures. Water Res. 2022;224:119052.

    Article  PubMed  Google Scholar 

  • He K, Duan H, Chen GY. Cleaning of oil fouling with water enabled by zwitterionic polyelectrolyte coatings: Overcoming the imperative challenge of oil-water separation membranes. ACS Nano. 2015;9:9188–98.

    Article  PubMed  Google Scholar 

  • Niu J, Wang H, Chen J. Bio-inspired zwitterionic copolymers for antifouling surface and oil-water separation. Colloids Surf A Physicochemical Eng Asp. 2021;626:127016.

    Article  Google Scholar 

  • Liu Q, Locklin J. Transparent grafted zwitterionic copolymer coatings that exhibit both antifogging and self-cleaning properties. ACS Omega. 2018;3:17743–50.

    Article  Google Scholar 

  • Ma MQ, Zhang C, Chen TT, Yang J, Wang JJ, Ji J, et al. Bioinspired polydopamine/polyzwitterion coatings for underwater anti-oil and -freezing surfaces. Langmuir. 2019;35:1895–901.

    Article  PubMed  Google Scholar 

  • Taylor ME, Panzer MJ. Fully-zwitterionic polymer-supported ionogel electrolytes featuring a hydrophobic ionic liquid. J Phys Chem. 2018;122:8469–76.

    Article  Google Scholar 

  • Yoshizawa-Fujita M, Ohno H. Applications of zwitterions and zwitterionic polymers for Li-ion batteries. Chem Rec. 2023;23:e202200287.

    Article  PubMed  Google Scholar 

  • Tadesse MY, Zhang Z, Marioni N, Zofchak ES, Duncan TJ, Ganesan V. Mechanisms of ion transport in lithium salt-doped zwitterionic polymer-supported ionic liquid electrolytes. J Chem Phys. 2024;160:024905.

    Article  PubMed  Google Scholar 

  • Alsaedi MK, Tadesse MY, Ganesan V. Zwitterionic polymer ionogel electrolytes supported by coulombic cross-links: Impacts of alkali metal cation identity. J Phys Chem B. 2024;128:3273–81.

    Article  PubMed  Google Scholar 

  • Kim H, Hight-Huf N, Kang JH, Bisnoff P, Sundararajan S, Thompson T, et al. Polymer zwitterions for stabilization of CsPbBr3 perovskite nanoparticles and nanocomposite films. Angew Chem Int Ed Engl. 2020;59:10802–6.

    Article  PubMed  Google Scholar 

  • Zhang L, Gao J, You Z. A multifunctional phosphorylcholine-based polymer reduces energy loss for efficient perovskite solar cells. J Mater Chem C. 2022;10:16781–8.

    Article  Google Scholar