References
-
El-Sheekh, M. M. et al. Influence of Fe + 2 on the biomass, pigments, and essential fatty acids of Arthrospira platensis. Biomass Convers. Biorefinery. 14, 621–629 (2024).
-
Kougia, E. et al. Iron (Fe) biofortification of Arthrospira platensis: Effects on growth, biochemical composition and in vitro iron bioaccessibility. Algal Res. 70, 103016 (2023).
-
Podgórska-Kryszczuk, I. Spirulina: An invaluable source of macro-and micronutrients with broad biological activity and application potential. Molecules 29, 5387 (2024).
-
Akbarnezhad, M., Mehrgan, M. S., Kamali, A. & Baboli, M. J. Effects of microelements (Fe, Cu, Zn) on growth and pigment contents of Arthrospira (Spirulina) platensis. Iran. J. Fisheries Sci. 19, 653–668 (2020).
-
Gentscheva, G. et al. Application of Arthrospira platensis for medicinal purposes and the food industry: A review of the literature. Life 13, 845 (2023).
-
Isani, G. et al. Iron content, iron speciation and phycocyanin in commercial samples of Arthrospira spp. Int. J. Mol. Sci. 23, 13949 (2022).
-
Stunda-Zujeva, A., Berele, M., Lece, A. & Šķesters, A. Comparison of antioxidant activity in various spirulina containing products and factors affecting it. Sci. Rep. 13, 4529 (2023).
-
Sahil, S., Bodh, S. & Verma, P. Spirulina platensis: A comprehensive review of its nutritional value, antioxidant activity and functional food potential. J. Cell. Biotechnol. 10, 159–172 (2024).
-
Haehling, S. V., Jankowska, E. A., Veldhuisen, D. J. V., Ponikowski, P. & Anker, S. D. Iron deficiency and cardiovascular disease. Nat. Reviews Cardiol. 12, 659–669 (2015).
-
Stoffel, N. U., Siebenthal, H. K., v., Moretti, D. & Zimmermann, M. B. Oral iron supplementation in iron-deficient women: How much and how often? Mol. Aspects Med. 75, 100865 (2020).
-
Hess, S. Y. et al. Accelerating action to reduce anemia: Review of causes and risk factors and related data needs. Ann. N. Y. Acad. Sci. 1523, 11–23 (2023).
-
Chang, M. & Liu, K. Arthrospira platensis as future food: A review on functional ingredients, bioactivities and application in the food industry. Int. J. Food Sci. Technol. 59, 1197–1212 (2024).
-
Moradi, S. et al. The effects of spirulina supplementation on serum iron and ferritin, anemia parameters, and fecal occult blood in adults with ulcerative colitis: A randomized, double-blinded, placebo-controlled trial. Clin. Nutr. ESPEN. 57, 755–763 (2023).
-
Kulaszyńska, M., Kwiatkowski, S. & Skonieczna-Żydecka, K. The iron metabolism with a specific focus on the functioning of the nervous system. Biomedicines 12, 595 (2024).
-
Isani, G. et al. Iron speciation and iron binding proteins in Arthrospira platensis grown in media containing different iron concentrations. Int. J. Mol. Sci. 23, 6283 (2022).
-
Peng, K. et al. Effect of iron concentration on the co-production of fucoxanthin and fatty acids in Conticribra weissflogii. Mar. Drugs. 22, 106 (2024).
-
Fan, X., Zhou, X., Chen, H., Tang, M. & Xie, X. Cross-talks between macro- and micronutrient uptake and signaling in plants. Front. Plant Sci. 12, 663477 (2021).
-
Zarrouk, C. Contribution a l’etude d’une cyanophycee. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina mixima. Thesis. University of Paris, France. (1966).
-
Markou, G., Chatzipavlidis, I. & Georgakakis, D. J. W. J. o. M. & Biotechnology. Effects of phosphorus concentration and light intensity on the biomass composition of Arthrospira (Spirulina) platensis. World J. Microbiol. Biotechnol. 28, 2661–2670 (2012).
-
Deamici, K. M., Santos, L. O. & Costa, J. A. V. J. B. t. Magnetic field action on outdoor and indoor cultures of Spirulina: Evaluation of growth, medium consumption and protein profile. Bioresour. Technol. 249, 168–174 (2018).
-
Markou, G., Eliopoulos, C., Argyri, A. & Arapoglou, D. Production of arthrospira (Spirulina) platensis enriched in β-glucans through phosphorus limitation. Appl. Sci. 11, 8121 (2021).
-
Herrera, A., Boussib, S., Napoleone, V. & Hohlberg, A. Recovery of c-phycocyanin from the cyanobacterium Spirulina maxima. J. Appl. Phycol. 1, 325–331 (1989).
-
Pan-Utai, W., Iamtham, S., Boonbumrung, S. & Mookdasanit, J. J. L. Improvement in the sequential extraction of phycobiliproteins from Arthrospira platensis using green technologies. Life 12, 1896 (2022).
-
Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).
-
Laurens, L. M. L. et al. Algal biomass constituent analysis: method uncertainties and investigation of the underlying measuring chemistries. Anal. Chem. 84, 1879–1887 (2012).
-
Shirazi, O. U., Khattak, M. M. A. K. & Shukri, N. A. M. N. N. Determination of total phenolic, flavonoid content and free radical scavenging activities of common herbs and spices. J. Pharmacogn Phytochem. 3, 104–108 (2014).
-
Barreca, D. et al. Evaluation of the nutraceutical, antioxidant and cytoprotective properties of ripe pistachio (Pistacia vera L., variety Bronte) hulls. Food Chem. 196, 493–502 (2016).
-
Velikova, V., Yordanov, I. & Edreva, A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Sci. 151, 59–66 (2000).
-
Heath, R. L. & Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125, 189–198 (1968).
-
Ismaiel, M. M., Piercey-Normore, M. D. & Rampitsch, C. Proteomic analyses of the cyanobacterium Arthrospira (Spirulina) platensis under iron and salinity stress. Environ. Exp. Bot. 147, 63–74 (2018).
-
Bortolini, D. G. et al. Functional properties of bioactive compounds from Spirulina spp.: Current status and future trends. Food Chem: Mol. Sci. 5, 100134 (2022).
-
Latifi, A., Ruiz, M. & Zhang, C. C. Oxidative stress in cyanobacteria. FEMS Microbiol. Rev. 33, 258–278 (2009).
-
Ribeiro, C., Stitt, M. & Hotta, C. T. How stress affects your budget: Stress impacts on starch metabolism. Front. Plant Sci. 13, 774060 (2022).
-
Fuentes-Lemus, E., Reyes, J. S., Figueroa, J. D., Davies, M. J. & López-Alarcón, C. The enzymes of the oxidative phase of the pentose phosphate pathway as targets of reactive species: Consequences for NADPH production. Biochem. Soc. Trans. 51, 2173–2187 (2023).
-
Nazir, F., Fariduddin, Q. & Khan, T. A. Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress. Chemosphere 252, 126486 (2020).
-
Jiang, H. B. et al. New insights into iron acquisition by cyanobacteria: an essential role for ExbB-ExbD complex in inorganic iron uptake. ISME J. 9, 297–309 (2015).
-
Masten Rutar, J. et al. Nutritional quality and safety of the spirulina dietary supplements sold on the Slovenian market. Foods 11, 849 (2022).
-
Raczyk, M., Polanowska, K., Kruszewski, B., Grygier, A. & Michałowska, D. Effect of spirulina (Arthrospira platensis) supplementation on physical and chemical properties of semolina (Triticum durum) based fresh pasta. Molecules 27, 355 (2022).
-
Nikolova, K. et al. Evaluation of some chemical characteristics of Spirulina from different manufacturers. J. Chem. Technol. Metall. 59, 805–811 (2024).
-
Anahas, A., Matharasi, P. & Muralitharan, G. Isolation and screening of heterocystous cyanobacterial strains for biodiesel production by evaluating the fuel properties from fatty acid methyl ester (FAME) profiles. Bioresour. Technol. 184, 9–17 (2015).
-
Ronda, S. R. & Lele, S. Culture conditions stimulating high γ-linolenic acid accumulation by Spirulina platensis. Brazilian J. Microbiol. 39, 693–697 (2008).
-
Kelebek, H., Uzlasir, T. & Sasmaz, H. K. Bioactive compounds and health benefits of Arthrospira platensis and Chlorella vulgaris: A comprehensive review. Food Nutr. 1, 100033 (2025).
-
McCarty, M. F. Clinical potential of spirulina as a source of phycocyanobilin. J. Med. Food. 10, 566–570. https://doi.org/10.1089/jmf.2007.621 (2007).
-
Jensen, G. S., Drapeau, C., Lenninger, M. & Benson, K. F. Clinical safety of a high dose of phycocyanin-enriched aqueous extract from Arthrospira (Spirulina) platensis: Results from a randomized, double-blind, placebo-controlled study with a focus on anticoagulant activity and platelet activation. J. Med. Food. 19, 645–653. https://doi.org/10.1089/jmf.2015.0143 (2016).
-
Alshuniaber, M. A., Krishnamoorthy, R. & AlQhtani, W. H. Antimicrobial activity of polyphenolic compounds from Spirulina against food-borne bacterial pathogens. Saudi J. Biol. Sci. 28, 459–464 (2021).
-
Behnke, J. & LaRoche, J. Iron uptake proteins in algae and the role of iron starvation-induced proteins (ISIPs). Eur. J. Phycol. 55, 339–360 (2020).
-
Hidayati, J. R., Yudiati, E., Pringgenies, D., Dktaviyanti, D. T. & Kusuma, A. P. In: E3S Web of Conferences. 03012 (EDP Sciences).
-
Jeong, Y. et al. Current status and future strategies to increase secondary metabolite production from cyanobacteria. Microorganisms 8, 1849 (2020).
-
Liang, T., Yue, W. & Li, Q. Comparison of the phenolic content and antioxidant activities of Apocynum venetum L.(Luo-Bu-Ma) and two of its alternative species. Int. J. Mol. Sci. 11, 4452–4464 (2010).
-
Hamadi, A. A. & Fajer, A. N. Potential effect of Spirulina extracts on serum iron reduction: Possible application in cancer treatment. Asian Pac. J. Cancer Biology. 10, 47–55 (2025).
-
Shang, Z. et al. Deciphering metabolomic insights into benzoic acid-mediated nutrient enrichment in Chlorella pyrenoidosa. Food Biosc. 59, 104157 (2024).
-
Vignaud, J. et al. Microalgae produce antioxidant molecules with potential preventive effects on mitochondrial functions and skeletal muscular oxidative stress. Antioxidants 12, 1050 (2023).
-
Al-Khafaji, A. M. & Al-Jubouri, K. D. Upgrading growth, yield, and folate levels of lettuce via salicylic acid and spirulina, vermicompost aqueous extracts. Iraqi J. Agricultural Sci. 54, 235–241 (2023).
-
Chen, J. et al. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Sci. Rep. 10, 2611 (2020).
-
Janda-Milczarek, K. et al. Spirulina supplements as a source of mineral nutrients in the daily diet. Appl. Sci. 13, 1011 (2023).
