References
-
Haverkort, A. J. et al. Societal costs of late blight in potato and prospects of durable resistance through cisgenic modification. Potato Res. 51, 47–57. https://doi.org/10.1007/s11540-008-9089-y (2008).
-
Berindean, I. V. et al. Modern breeding strategies and tools for durable late blight resistance in potato. Plants 13, 1711 (2024).
-
Rossman, A. Y. P. Why are Phytophthora and other oomycota not true fungi? Outlooks Pest Manage. 17, 217–219. https://doi.org/10.1564/17oct08 (2006).
-
Boevink, P. C., Birch, P. R. J., Turnbull, D. & Whisson, S. C. Devastating intimacy: the cell biology of plant–Phytophthora interactions. New Phytol. 228, 445–458. https://doi.org/10.1111/nph.16650 (2020).
-
Sabbadin, F. et al. Secreted pectin monooxygenases drive plant infection by pathogenic oomycetes. Science 373, 774–779. https://doi.org/10.1126/science.abj1342 (2021).
-
Pei, Y. et al. A receptor kinase senses sterol by coupling with elicitins in auxotrophic Phytophthora. Proc. Natl. Acad. Sci. 121, e2408186121. https://doi.org/10.1073/pnas.2408186121 (2024).
-
Saraiva, M. et al. The molecular dialog between oomycete effectors and their plant and animal hosts. Fungal Biology Reviews. 43, 100289. https://doi.org/10.1016/j.fbr.2022.10.002 (2023).
-
Tian, M., Huitema, E., da Cunha, L., Torto-Alalibo, T. & Kamoun, S. A Kazal-like extracellular srine protease inhibitor from Phytophthora infestans targets the tomato pathogenesis-related protease P69B*. J. Biol. Chem. 279, 26370–26377. https://doi.org/10.1074/jbc.M400941200 (2004).
-
Tian, M., Benedetti, B. & Kamoun, S. A second Kazal-like protease inhibitor from Phytophthora infestans inhibits and interacts with the apoplastic pathogenesis-related protease P69B of tomato. Plant. Physiol. 138, 1785–1793. https://doi.org/10.1104/pp.105.061226 (2005).
-
Damasceno, C. M. B. et al. Structure of the glucanase inhibitor protein (GIP) family from Phytophthora species suggests coevolution with plant endo-β-1,3-glucanases. Mol. Plant Microbe Interact. 21, 820–830. https://doi.org/10.1094/mpmi-21-6-0820 (2008).
-
Haas, B. J. et al. Genome sequence and analysis of the Irish potato famine pathogen phytophthora infestans. Nature 461, 393–398. https://doi.org/10.1038/nature08358 (2009).
-
Wang, S., McLellan, H., Boevink, P. C. & Birch, P. R. J. RxLR effectors: master modulators, modifiers and manipulators. Mol. Plant Microbe Interact. 36, 754–763. https://doi.org/10.1094/mpmi-05-23-0054-cr (2023).
-
Théry, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles. 7, 1535750. https://doi.org/10.1080/20013078.2018.1535750 (2018).
-
Thieron, H. et al. Practical advice for extracellular vesicle isolation in plant-microbe interactions: Concerns, considerations, and conclusions. J. Extracell. Vesicles. 13, e70022. https://doi.org/10.1002/jev2.70022 (2024).
-
Zhu, J. et al. Divergent sequences of tetraspanins enable plants to specifically recognize microbe-derived extracellular vesicles. Nat. Commun. 14, 4877. https://doi.org/10.1038/s41467-023-40623-0 (2023).
-
Breen, S. et al. Identification of marvelous protein markers for Phytophthora infestans extracellular vesicles. J. Extracell. Vesicles. 14, e70101. https://doi.org/10.1002/jev2.70101 (2025).
-
Linares, R., Tan, S., Gounou, C., Arraud, N. & Brisson, A. R. High-speed centrifugation induces aggregation of extracellular vesicles. J. Extracell. Vesicles. 4, 29509. https://doi.org/10.3402/jev.v4.29509 (2015).
-
Witwer, K. W. et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles. 2, 20360. https://doi.org/10.3402/jev.v2i0.20360 (2013).
-
Duong, P., Chung, A., Bouchareychas, L. & Raffai, R. L. Cushioned-density gradient ultracentrifugation (C-DGUC) improves the isolation efficiency of extracellular vesicles. PLOS ONE. 14, e0215324. https://doi.org/10.1371/journal.pone.0215324 (2019).
-
Mateescu, B. et al. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA – an ISEV position paper. J. Extracell. Vesicles. 6, 1286095. https://doi.org/10.1080/20013078.2017.1286095 (2017).
-
Palatinus, L. R., Schlemmer, T. & Koch, A. Technical advances in extracellular vesicle isolation from fungi and oomycetes: insights from plant-pathogenic species. Fungal Biology Reviews. 53, 100444. https://doi.org/10.1016/j.fbr.2025.100444 (2025).
-
Xu, L. et al. Proteolytic processing of both RXLR and EER motifs in oomycete effectors. New Phytol. 245, 1640–1654. https://doi.org/10.1111/nph.20130 (2025).
-
Kowal, J. et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl. Acad. Sci. 113, E968–E977. https://doi.org/10.1073/pnas.1521230113 (2016).
-
Quillin, M. L. & Matthews, B. W. Accurate calculation of the density of proteins. Acta Crystallogr. Sect. D. 56, 791–794. https://doi.org/10.1107/S090744490000679X (2000).
-
Rutter, B. D. et al. The development of extracellular vesicle markers for the fungal phytopathogen Colletotrichum higginsianum. J. Extracell. Vesicles. 11, e12216. https://doi.org/10.1002/jev2.12216 (2022).
-
Pascucci, L. & Scattini, G. Imaging extracelluar vesicles by transmission electron microscopy: coping with technical hurdles and morphological interpretation. Biochim. Et Biophys. Acta (BBA) – Gen. Subj. 1865, 129648. https://doi.org/10.1016/j.bbagen.2020.129648 (2021).
-
Tian, Y. et al. Quality and efficiency assessment of six extracellular vesicle isolation methods by nano-flow cytometry. J. Extracell. Vesicles. 9, 1697028. https://doi.org/10.1080/20013078.2019.1697028 (2020).
-
Thumuluri, V., Almagro Armenteros, J. J., Johansen, Alexander, R., Nielsen, H. & Winther, O. DeepLoc 2.0: multi-label subcellular localization prediction using protein Language models. Nucleic Acids Res. 50, W228–W234. https://doi.org/10.1093/nar/gkac278 (2022).
-
Nickel, W. & Rabouille, C. Mechanisms of regulated unconventional protein secretion. Nat. Rev. Mol. Cell Biol. 10, 148–155. https://doi.org/10.1038/nrm2617 (2009).
-
Grieve, A. G. & Rabouille, C. Golgi bypass: skirting around the heart of classical secretion. Cold Spring Harb. Perspect. Biol. 3 https://doi.org/10.1101/cshperspect.a005298 (2011).
-
Meijer, H. J. G. et al. Profiling the secretome and extracellular proteome of the potato late blight pathogen Phytophthora infestans. Mol. Cell. Proteom. 13, 2101–2113. https://doi.org/10.1074/mcp.M113.035873 (2014).
-
Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nat. Rev. Mol. Cell Biol. 2, 107–117. https://doi.org/10.1038/35052055 (2001).
-
Stenmark, H. & Olkkonen, V. M. The Rab GTPase family. Genome Biol. 2, reviews3007.3001. https://doi.org/10.1186/gb-2001-2-5-reviews3007 (2001).
-
Shikanai, M. et al. Rab21 regulates caveolin-1‐mediated endocytic trafficking to promote immature neurite pruning. EMBO Rep. 24, e54701. https://doi.org/10.15252/embr.202254701 (2023).
-
Conibear, E. & Stevens, T. H. Vps52p, Vps53p, and Vps54p form a novel multisubunit complex required for protein sorting at the yeast late golgi. Mol. Biol. Cell. 11, 305–323. https://doi.org/10.1091/mbc.11.1.305 (2000).
-
Conibear, E., Cleck, J. N. & Stevens, T. H. Vps51p mediates the association of the GARP (Vps52/53/54) complex with the late golgi t-SNARE Tlg1p. Mol. Biol. Cell. 14, 1610–1623. https://doi.org/10.1091/mbc.e02-10-0654 (2003).
-
Jahn, R., Cafiso, D. C. & Tamm, L. K. Mechanisms of SNARE proteins in membrane fusion. Nat. Rev. Mol. Cell Biol. 25, 101–118. https://doi.org/10.1038/s41580-023-00668-x (2024).
-
Welsh, L. R. J. & Whisson, S. C. Protoplast transformation of Phytophthora spp. Methods Mol. Biol. 2892, 35–47. https://doi.org/10.1007/978-1-0716-4330-3_3 (2025).
-
Ah-Fong, A. M. & Judelson, H. S. Vectors for fluorescent protein tagging in Phytophthora: tools for functional genomics and cell biology. Fungal Biology. 115, 882–890. https://doi.org/10.1016/j.funbio.2011.07.001 (2011).
-
Judelson, H. S., Tyler, B. M. & Michelmore, R. W. Transformation of the oomycete pathogen, Phytophthora infestans. Mol. Plant. Microbe Interact. 4, 602–607. https://doi.org/10.1094/mpmi-4-602 (1991).
-
Heard, W., Sklenar, J., Tome, D. F., Robatzek, S. & Jones, A. M. Identification of regulatory and cargo proteins of endosomal and secretory pathways in Arabidopsis thaliana by proteomic dissection. Mol. Cell. Proteomics. 14, 1796–1813. https://doi.org/10.1074/mcp.M115.050286 (2015).
-
Yeung, Y. G. & Stanley, E. R. Rapid detergent removal from peptide samples with ethyl acetate for mass spectrometry analysis. Curr. Protocols Protein Sci. 59, 16.12.11–16.12.15. https://doi.org/10.1002/0471140864.ps1612s59 (2010).
-
Doellinger, J., Blumenscheit, C., Schneider, A. & Lasch, P. Isolation window optimization of data-independent acquisition using predicted libraries for deep and accurate proteome profiling. Anal. Chem. 92, 12185–12192. https://doi.org/10.1021/acs.analchem.0c00994 (2020).
-
Tyanova, S. et al. The perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 13, 731–740. https://doi.org/10.1038/nmeth.3901 (2016).
-
Larsson, J. eulerr: area-proportional Euler and Venn diagrams with ellipses. R package version 7.0.2. https://CRAN.R-project.org/package=eulerr (2024).
-
Warnes, G. R. et al. gplots: various R programming tools for plotting data. R package version 3.2.0. https://CRAN.R-project.org/package=gplots (2024).
-
Wickham, H. ggplot2: elegant graphics for data analysis. https://ggplot2.tidyverse.org (2016).
-
Zheng, J. et al. dbCAN3: automated carbohydrate-active enzyme and substrate annotation. Nucleic Acids Res. 51, W115–W121. https://doi.org/10.1093/nar/gkad328 (2023).
-
Ebbert, D. chisq.posthoc.test [Chisq.posthoc.test is a R package that is designed to run a post hoc analysis for Pearson’s Chi-squared Test for Count Data]. https://github.com/ebbertd/chisq.posthoc.test (2019).
-
Raffaele, S., Win, J., Cano, L. M. & Kamoun, S. Analyses of genome architecture and gene expression reveal novel candidate virulence factors in the secretome of Phytophthora infestans. BMC Genom. 11, 637. https://doi.org/10.1186/1471-2164-11-637 (2010).
-
Ge, S. X., Jung, D. & Yao, R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36, 2628–2629. https://doi.org/10.1093/bioinformatics/btz931 (2019).
-
Perez-Riverol, Y. et al. The PRIDE database at 20 years: 2025 update. Nucleic Acids Res. 53, D543–D553. https://doi.org/10.1093/nar/gkae1011 (2024).
