References
-
Dou, C., Marcondes, W. F., Djaja, J. E., Bura, R. & Gustafson, R. Can we use short rotation coppice poplar for sugar based biorefinery feedstock? Bioconversion of 2-year-old poplar grown as short rotation coppice. Biotechnol. Biofuels 10, 1–15 (2017).
-
Hamant, O. & Pautot, V. Plant development: a TALE story. C.R. Biol. 333, 371–381 (2010).
-
Jia, P. et al. Characterization of the KNOTTED1-like HOMEOBOX gene family in kiwifruit and functional analysis of AcKNOX11 related to plant growth, flowering, and melatonin-mediated germination inhibition. Sci. Hortic. 325, 112690 (2024).
-
Qin, W. et al. The class II KNOX transcription factors KNAT3 and KNAT7 synergistically regulate monolignol biosynthesis in Arabidopsis. J. Exp. Bot. 71, 5469–5483 (2020).
-
Li, E. et al. The Class II KNOX gene KNAT7 negatively regulates secondary wall formation in Arabidopsis and is functionally conserved in Populus. New Phytol. 194, 102–115 (2012).
-
Bryant, N. D. et al. Transgenic poplar designed for biofuels. Trends Plant Sci. 25, 881–896 (2020).
-
Sahoo, D. & Maiti, I. Biomass derived from transgenic tobacco expressing the Arabidopsis CESA3 ixr1-2 gene exhibits improved saccharification. Acta Biol. Hung. 65, 189–204 (2014).
-
Liu, Q., Luo, L. & Zheng, L. Lignins: biosynthesis and biological functions in plants. Int. J. Mol. Sci. 19, 335 (2018).
-
Yadav, S. & Chattopadhyay, D. Lignin: the building block of defense responses to stress in plants. J. Plant Growth Regul. 42, 6652–6666 (2023).
-
Geng, P. et al. MYB20, MYB42, MYB43, and MYB85 regulate phenylalanine and lignin biosynthesis during secondary cell wall formation. Plant Physiol. 182, 1272–1283 (2020).
-
Ahlawat, Y. K. et al. Genetic modification of KNAT7 transcription factor expression enhances saccharification and reduces recalcitrance of woody biomass in poplars. Front. Plant Sci. 12, 762067 (2021).
-
Huang, X. Y. & Salt, D. E. Plant ionomics: from elemental profiling to environmental adaptation. Mol. Plant 9, 787–797 (2016).
-
Kumar, R., Bohra, A., Pandey, A. K., Pandey, M. K. & Kumar, A. Metabolomics for plant improvement: status and prospects. Front. Plant Sci. 8, 1302 (2017).
-
Xu, C. et al. PtoMYB170 positively regulates lignin deposition during wood formation in poplar and confers drought tolerance in transgenic Arabidopsis. Tree Physiol. 37, 1713–1726 (2017).
-
Bevan, M. W. & Franssen, M. C. Investing in green and white biotech. Nat. Biotechnol. 24, 765–767 (2006).
-
Ragauskas, A. J. et al. The path forward for biofuels and biomaterials. Science 311, 484–489 (2006).
-
Wang, N. et al. Leaf transformation for efficient random integration and targeted genome modification in maize and sorghum. Nat. Plants 9, 255–270 (2023).
-
Fritsche-Guenther, R. et al. Optimized workflow for on-line derivatization for targeted metabolomics approach by gas chromatography-mass spectrometry. Metabolites 11, 888 (2021).
-
Fiehn, O., Kopka, J., Trethewey, R. N. & Willmitzer, L. Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal. Chem. 72, 3573–3580 (2000).
-
Pang, Z. et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 49, W388–W396 (2021).
-
Rossum, V. Python 3 reference manual (2009).
-
McKinney, W. Data structures for statistical computing in Python. Scipy 445, 51–56 (2010).
-
Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).
-
Gahoonia, T. S., Ali, R., Malhotra, R. S., Jahoor, A. & Rahman, M. M. Variation in root morphological and physiological traits and nutrient uptake of chickpea genotypes. J. Plant Nutr. 30, 829–841 (2007).
-
Becker, A. M., Gerstmann, S. & Frank, H. Perfluorooctanoic acid and perfluorooctane sulfonate in the sediment of the Roter Main river, Bayreuth, Germany. Environ. Pollut. 156, 818–820 (2008).
-
Yao, W., Zhang, D., Zhou, B., Wang, J. & Li, R. Over-expression of poplar NAC15 gene enhances wood formation in transgenic tobacco. BMC Plant Biol. 20, 12 (2020).
-
Wang, S. et al. Rice homeobox protein KNAT7 integrates the pathways regulating cell expansion and wall stiffness. Plant Physiol. 181, 669–682 (2019).
-
Xu, W. et al. Identification of ZmBK2 Gene Variation Involved in Regulating Maize Brittleness. Genes 14, 1126 (2023).
-
Yamaguchi, M. et al. The rice BRITTLE CULM 4 gene encodes a membrane protein affecting cellulose synthesis in the secondary cell wall. Plant Cell Physiol. 66, 1444–1453 (2025).
-
Heli, Z. et al. Recent advances of γ-aminobutyric acid: Physiological and immunity function, enrichment, and metabolic pathway. Front. Nutr. 9, 1076223 (2022).
-
Mottiar, Y., Karlen, S. D., Goacher, R. E., Ralph, J. & Mansfield, S. D. Metabolic engineering of p-hydroxybenzoate in poplar lignin. Plant Biotechnol. J. 21, 176–188 (2023).
-
Pratelli, R. & Pilot, G. Regulation of amino acid metabolic enzymes and transporters in plants. J. Exp. Bot. 65, 5535–5556 (2014).
-
Cao, L. et al. Nitrogen modifies wood composition in poplar seedlings by regulating carbon and nitrogen metabolism. Ind. Crops Prod. 219, 119118 (2024).
-
Zhu, Q. et al. Metabolomic and transcriptomic analyses reveals candidate genes and pathways involved in secondary metabolism in Bergenia purpurascens. BMC Genom. 25, 1083 (2024).
-
Zhao, K. & Bartley, L. E. Comparative genomic analysis of the R2R3 MYB secondary cell wall regulators of Arabidopsis, poplar, rice, maize, and switchgrass. BMC Plant Biol. 14, 1–21 (2014).
-
Huang, J. H. et al. Magnesium deficiency affects secondary lignification of the vascular system in Citrus sinensis seedlings. Trees 33, 171–182 (2019).
-
Chevilly, S. et al. Distinctive traits for drought and salt stress tolerance in melon (Cucumis melo L.). Front. Plant Sci. 12, 777060 (2021).
-
Chevilly, S. et al. Identification of distinctive physiological and molecular responses to salt stress among tolerant and sensitive cultivars of broccoli (Brassica oleracea var. Italica). BMC Plant Biol. 21, 1–16 (2021).
-
Wang, Y., Chen, Y. F. & Wu, W. H. Potassium and phosphorus transport and signaling in plants. J. Integr. Plant Biol. 63, 34–52 (2021).
-
Ye, X. et al. Molecular mechanisms for magnesium-deficiency-induced leaf vein lignification, enlargement and cracking in Citrus sinensis revealed by RNA-Seq. Tree Physiol. 41, 280–301 (2021).
-
Ahmed, N. et al. The power of magnesium: unlocking the potential for increased yield, quality, and stress tolerance of horticultural crops. Front. Plant Sci. 14, 1285512 (2023).
-
Mydy, L. S., Chigumba, D. N. & Kersten, R. D. Plant copper metalloenzymes as prospects for new metabolism involving aromatic compounds. Front. Plant Sci. 12, 692108 (2021).
-
Barros, J., Serk, H., Granlund, I. & Pesquet, E. The cell biology of lignification in higher plants. Ann. Bot. 115, 1053–1074 (2015).
-
Chigumba, D. N. et al. Discovery and biosynthesis of cyclic plant peptides via autocatalytic cyclases. Nat. Chem. Biol. 18, 18–28 (2022).
-
Marschner, H. Marschner’s mineral nutrition of higher plants. Academic press (2011).
-
Sharma, P., Jha, A.B., Dubey, R.S. & Pessarakli, M. Reactive oxygen species generation, hazards, and defense mechanisms in plants under environmental (abiotic and biotic) stress conditions. Handbook of plant and crop physiology. 617–658 (2021).
-
Xu, E. et al. Molecular Mechanisms of Plant Responses to Copper: From Deficiency to Excess. Int. J. Mol. Sci. 25, 6993 (2024).
-
Zhong, R., Lee, C. & Ye, Z. H. Functional characterization of poplar wood-associated NAC domain transcription factors. Plant Physiol. 152, 1044–1055 (2010).
-
Liu, Y. et al. BEL1-LIKE HOMEODOMAIN6 and KNOTTED ARABIDOPSIS THALIANA7 interact and regulate secondary cell wall formation via repression of REVOLUTA. Plant Cell 26, 4843–4861 (2014).
-
Ma, R. et al. Biological function and stress response mechanism of MYB transcription factor family genes. J. Plant Growth Regul. 42, 83–95 (2023).
-
Gall, H. L. et al. Cell wall metabolism in response to abiotic stress. Plants 4, 112–166 (2015).
-
Benito, P., Bellón, J., Porcel, R., Yenush, L. & Mulet, J. M. The biostimulant, potassium humate ameliorates abiotic stress in Arabidopsis thaliana by increasing starch availability. Int. J. Mol. Sci. 24, 12140 (2023).
-
Munns, R. & Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681 (2008).
-
Taïbi, K. et al. Drought tolerance in Pinus halepensis seed sources as identified by distinctive physiological and molecular markers. Front. Plant Sci. 8, 1202 (2017).
-
Heise, K. et al. Nanocellulose: recent fundamental advances and emerging biological and biomimicking applications. Adv. Mater. 33, 2004349 (2021).
-
Chen, E. L., Chen, Y. A., Chen, L. M. & Liu, Z. H. Effect of copper on peroxidase activity and lignin content in Raphanus sativus. Plant Physiol. Biochem. 40, 439–444 (2002).
-
Xie, Y. et al. In Vitro Plantlet Regeneration and Accumulation of Ginkgolic Acid in Leaf Biomass of Ginkgo biloba L. Forests 16, 1539 (2025).
