KNAT7 transcription factor regulates metabolite and ion profiles to control cell wall biosynthesis in Populus

knat7-transcription-factor-regulates-metabolite-and-ion-profiles-to-control-cell-wall-biosynthesis-in-populus
KNAT7 transcription factor regulates metabolite and ion profiles to control cell wall biosynthesis in Populus

References

  1. Dou, C., Marcondes, W. F., Djaja, J. E., Bura, R. & Gustafson, R. Can we use short rotation coppice poplar for sugar based biorefinery feedstock? Bioconversion of 2-year-old poplar grown as short rotation coppice. Biotechnol. Biofuels 10, 1–15 (2017).

    Google Scholar 

  2. Hamant, O. & Pautot, V. Plant development: a TALE story. C.R. Biol. 333, 371–381 (2010).

    Google Scholar 

  3. Jia, P. et al. Characterization of the KNOTTED1-like HOMEOBOX gene family in kiwifruit and functional analysis of AcKNOX11 related to plant growth, flowering, and melatonin-mediated germination inhibition. Sci. Hortic. 325, 112690 (2024).

    Google Scholar 

  4. Qin, W. et al. The class II KNOX transcription factors KNAT3 and KNAT7 synergistically regulate monolignol biosynthesis in Arabidopsis. J. Exp. Bot. 71, 5469–5483 (2020).

    Google Scholar 

  5. Li, E. et al. The Class II KNOX gene KNAT7 negatively regulates secondary wall formation in Arabidopsis and is functionally conserved in Populus. New Phytol. 194, 102–115 (2012).

    Google Scholar 

  6. Bryant, N. D. et al. Transgenic poplar designed for biofuels. Trends Plant Sci. 25, 881–896 (2020).

    Google Scholar 

  7. Sahoo, D. & Maiti, I. Biomass derived from transgenic tobacco expressing the Arabidopsis CESA3 ixr1-2 gene exhibits improved saccharification. Acta Biol. Hung. 65, 189–204 (2014).

    Google Scholar 

  8. Liu, Q., Luo, L. & Zheng, L. Lignins: biosynthesis and biological functions in plants. Int. J. Mol. Sci. 19, 335 (2018).

    Google Scholar 

  9. Yadav, S. & Chattopadhyay, D. Lignin: the building block of defense responses to stress in plants. J. Plant Growth Regul. 42, 6652–6666 (2023).

    Google Scholar 

  10. Geng, P. et al. MYB20, MYB42, MYB43, and MYB85 regulate phenylalanine and lignin biosynthesis during secondary cell wall formation. Plant Physiol. 182, 1272–1283 (2020).

    Google Scholar 

  11. Ahlawat, Y. K. et al. Genetic modification of KNAT7 transcription factor expression enhances saccharification and reduces recalcitrance of woody biomass in poplars. Front. Plant Sci. 12, 762067 (2021).

    Google Scholar 

  12. Huang, X. Y. & Salt, D. E. Plant ionomics: from elemental profiling to environmental adaptation. Mol. Plant 9, 787–797 (2016).

    Google Scholar 

  13. Kumar, R., Bohra, A., Pandey, A. K., Pandey, M. K. & Kumar, A. Metabolomics for plant improvement: status and prospects. Front. Plant Sci. 8, 1302 (2017).

    Google Scholar 

  14. Xu, C. et al. PtoMYB170 positively regulates lignin deposition during wood formation in poplar and confers drought tolerance in transgenic Arabidopsis. Tree Physiol. 37, 1713–1726 (2017).

    Google Scholar 

  15. Bevan, M. W. & Franssen, M. C. Investing in green and white biotech. Nat. Biotechnol. 24, 765–767 (2006).

    Google Scholar 

  16. Ragauskas, A. J. et al. The path forward for biofuels and biomaterials. Science 311, 484–489 (2006).

    Google Scholar 

  17. Wang, N. et al. Leaf transformation for efficient random integration and targeted genome modification in maize and sorghum. Nat. Plants 9, 255–270 (2023).

    Google Scholar 

  18. Fritsche-Guenther, R. et al. Optimized workflow for on-line derivatization for targeted metabolomics approach by gas chromatography-mass spectrometry. Metabolites 11, 888 (2021).

    Google Scholar 

  19. Fiehn, O., Kopka, J., Trethewey, R. N. & Willmitzer, L. Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal. Chem. 72, 3573–3580 (2000).

    Google Scholar 

  20. Pang, Z. et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 49, W388–W396 (2021).

    Google Scholar 

  21. Rossum, V. Python 3 reference manual (2009).

  22. McKinney, W. Data structures for statistical computing in Python. Scipy 445, 51–56 (2010).

    Google Scholar 

  23. Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Google Scholar 

  24. Gahoonia, T. S., Ali, R., Malhotra, R. S., Jahoor, A. & Rahman, M. M. Variation in root morphological and physiological traits and nutrient uptake of chickpea genotypes. J. Plant Nutr. 30, 829–841 (2007).

    Google Scholar 

  25. Becker, A. M., Gerstmann, S. & Frank, H. Perfluorooctanoic acid and perfluorooctane sulfonate in the sediment of the Roter Main river, Bayreuth, Germany. Environ. Pollut. 156, 818–820 (2008).

    Google Scholar 

  26. Yao, W., Zhang, D., Zhou, B., Wang, J. & Li, R. Over-expression of poplar NAC15 gene enhances wood formation in transgenic tobacco. BMC Plant Biol. 20, 12 (2020).

    Google Scholar 

  27. Wang, S. et al. Rice homeobox protein KNAT7 integrates the pathways regulating cell expansion and wall stiffness. Plant Physiol. 181, 669–682 (2019).

    Google Scholar 

  28. Xu, W. et al. Identification of ZmBK2 Gene Variation Involved in Regulating Maize Brittleness. Genes 14, 1126 (2023).

    Google Scholar 

  29. Yamaguchi, M. et al. The rice BRITTLE CULM 4 gene encodes a membrane protein affecting cellulose synthesis in the secondary cell wall. Plant Cell Physiol. 66, 1444–1453 (2025).

    Google Scholar 

  30. Heli, Z. et al. Recent advances of γ-aminobutyric acid: Physiological and immunity function, enrichment, and metabolic pathway. Front. Nutr. 9, 1076223 (2022).

    Google Scholar 

  31. Mottiar, Y., Karlen, S. D., Goacher, R. E., Ralph, J. & Mansfield, S. D. Metabolic engineering of p-hydroxybenzoate in poplar lignin. Plant Biotechnol. J. 21, 176–188 (2023).

    Google Scholar 

  32. Pratelli, R. & Pilot, G. Regulation of amino acid metabolic enzymes and transporters in plants. J. Exp. Bot. 65, 5535–5556 (2014).

    Google Scholar 

  33. Cao, L. et al. Nitrogen modifies wood composition in poplar seedlings by regulating carbon and nitrogen metabolism. Ind. Crops Prod. 219, 119118 (2024).

    Google Scholar 

  34. Zhu, Q. et al. Metabolomic and transcriptomic analyses reveals candidate genes and pathways involved in secondary metabolism in Bergenia purpurascens. BMC Genom. 25, 1083 (2024).

    Google Scholar 

  35. Zhao, K. & Bartley, L. E. Comparative genomic analysis of the R2R3 MYB secondary cell wall regulators of Arabidopsis, poplar, rice, maize, and switchgrass. BMC Plant Biol. 14, 1–21 (2014).

    Google Scholar 

  36. Huang, J. H. et al. Magnesium deficiency affects secondary lignification of the vascular system in Citrus sinensis seedlings. Trees 33, 171–182 (2019).

    Google Scholar 

  37. Chevilly, S. et al. Distinctive traits for drought and salt stress tolerance in melon (Cucumis melo L.). Front. Plant Sci. 12, 777060 (2021).

    Google Scholar 

  38. Chevilly, S. et al. Identification of distinctive physiological and molecular responses to salt stress among tolerant and sensitive cultivars of broccoli (Brassica oleracea var. Italica). BMC Plant Biol. 21, 1–16 (2021).

    Google Scholar 

  39. Wang, Y., Chen, Y. F. & Wu, W. H. Potassium and phosphorus transport and signaling in plants. J. Integr. Plant Biol. 63, 34–52 (2021).

    Google Scholar 

  40. Ye, X. et al. Molecular mechanisms for magnesium-deficiency-induced leaf vein lignification, enlargement and cracking in Citrus sinensis revealed by RNA-Seq. Tree Physiol. 41, 280–301 (2021).

    Google Scholar 

  41. Ahmed, N. et al. The power of magnesium: unlocking the potential for increased yield, quality, and stress tolerance of horticultural crops. Front. Plant Sci. 14, 1285512 (2023).

    Google Scholar 

  42. Mydy, L. S., Chigumba, D. N. & Kersten, R. D. Plant copper metalloenzymes as prospects for new metabolism involving aromatic compounds. Front. Plant Sci. 12, 692108 (2021).

    Google Scholar 

  43. Barros, J., Serk, H., Granlund, I. & Pesquet, E. The cell biology of lignification in higher plants. Ann. Bot. 115, 1053–1074 (2015).

    Google Scholar 

  44. Chigumba, D. N. et al. Discovery and biosynthesis of cyclic plant peptides via autocatalytic cyclases. Nat. Chem. Biol. 18, 18–28 (2022).

    Google Scholar 

  45. Marschner, H. Marschner’s mineral nutrition of higher plants. Academic press (2011).

  46. Sharma, P., Jha, A.B., Dubey, R.S. & Pessarakli, M. Reactive oxygen species generation, hazards, and defense mechanisms in plants under environmental (abiotic and biotic) stress conditions. Handbook of plant and crop physiology. 617–658 (2021).

  47. Xu, E. et al. Molecular Mechanisms of Plant Responses to Copper: From Deficiency to Excess. Int. J. Mol. Sci. 25, 6993 (2024).

    Google Scholar 

  48. Zhong, R., Lee, C. & Ye, Z. H. Functional characterization of poplar wood-associated NAC domain transcription factors. Plant Physiol. 152, 1044–1055 (2010).

    Google Scholar 

  49. Liu, Y. et al. BEL1-LIKE HOMEODOMAIN6 and KNOTTED ARABIDOPSIS THALIANA7 interact and regulate secondary cell wall formation via repression of REVOLUTA. Plant Cell 26, 4843–4861 (2014).

    Google Scholar 

  50. Ma, R. et al. Biological function and stress response mechanism of MYB transcription factor family genes. J. Plant Growth Regul. 42, 83–95 (2023).

    Google Scholar 

  51. Gall, H. L. et al. Cell wall metabolism in response to abiotic stress. Plants 4, 112–166 (2015).

    Google Scholar 

  52. Benito, P., Bellón, J., Porcel, R., Yenush, L. & Mulet, J. M. The biostimulant, potassium humate ameliorates abiotic stress in Arabidopsis thaliana by increasing starch availability. Int. J. Mol. Sci. 24, 12140 (2023).

    Google Scholar 

  53. Munns, R. & Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681 (2008).

    Google Scholar 

  54. Taïbi, K. et al. Drought tolerance in Pinus halepensis seed sources as identified by distinctive physiological and molecular markers. Front. Plant Sci. 8, 1202 (2017).

    Google Scholar 

  55. Heise, K. et al. Nanocellulose: recent fundamental advances and emerging biological and biomimicking applications. Adv. Mater. 33, 2004349 (2021).

    Google Scholar 

  56. Chen, E. L., Chen, Y. A., Chen, L. M. & Liu, Z. H. Effect of copper on peroxidase activity and lignin content in Raphanus sativus. Plant Physiol. Biochem. 40, 439–444 (2002).

    Google Scholar 

  57. Xie, Y. et al. In Vitro Plantlet Regeneration and Accumulation of Ginkgolic Acid in Leaf Biomass of Ginkgo biloba L. Forests 16, 1539 (2025).

    Google Scholar 

Download references